An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment ...An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment tests are time-consuming and incur significant costs; thus, developing a short-period and low-cost numerical method is warranted. Using explicit nonlinear dynamic finite element analysis software, the present study numerically investigated the high-speed impact process for simulated blade containment tests which were carried out on high-speed spin testing facility. A number of simulations were conducted using finite element models with different mesh sizes and different values of both the contact penalty factor and the friction coefficient. Detailed comparisons between the experimental and numerical results reveal that the mesh size and the friction coefficient have a considerable impact on the results produced. It is shown that a finer mesh will predict lower containment capability of the case, which is closer to the test data. A larger value of the friction coefficient also predicts lower containment capability. However, the contact penalty factor has little effect on the simulation results if it is large enough to avoid false penetration.展开更多
Disk burst accidents sometimes happen in aeroengines.To avoid tragic consequences,aeroengine casings must have sufficient containment capability.Experiments and simulations need to be conducted to study the impact,dis...Disk burst accidents sometimes happen in aeroengines.To avoid tragic consequences,aeroengine casings must have sufficient containment capability.Experiments and simulations need to be conducted to study the impact,distortion,and perforation caused by disk burst and which may give important clues to potential failure mechanisms.This paper presents some containment tests of high-speed rotating disk fragments,in which the original disks were burst into three equal fragments within a predetermined rotating speed range.The failure modes of the containment casing varied significantly with the thickness of the containment casing.Shearing,tearing,tensile fracture,and large plastic stretching deformation occurred in a thin-walled containment casing,while a thick-walled casing could contain disk fragments and withstand large plastic deformation.Numerical simulations were carried out to study the impact process and failure modes further.Good agreement was found between the results of the simulations and the tests.展开更多
Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has change...Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has changed significantly due to global warming.Meanwhile,with increasing human activities,the spatiotemporal pattern and driving forces of vegetation variation in the area are uncertain and difficult to accurately assess.Hence,we quantified the vegetation growth by using the Normalized Difference Vegetation Index(NDVI)on the Google Earth Engine(GEE).Then,the spatiotemporal patterns of vegetation from 2000 to 2019 were analyzed at the pixel scale.Finally,significance threshold segmentation was performed using meteorological data based on the correlation analysis results,and the contributions of climate change and human activities to vegetation variation were quantified.The results demonstrated that the vegetation coverage in Altay Prefecture is mainly concentrated in the north.The vegetation areas representing significant restoration and degradation from 2000 to 2019 accounted for 24.08% and 1.24% of Altay Prefecture,respectively.Moreover,spatial correlation analysis showed that the areas with significant correlations between NDVI and temperature,precipitation and sunlight hours accounted for 3.3%,6.9% and 20.3% of Altay Prefecture,respectively.In the significant restoration area,18.94% was dominated by multiple factors,while 3.4% was dominated by human activities,and 1.74% was dominated by climate change.Within the significant degradation area,abnormal degradation and climate change controlled 1.07% and 0.17%,respectively.This study revealed the dynamic changes of vegetation and their driving mechanisms in Altay Prefecture,and can provide scientific support for further research on life community mechanism theory and key remediation technology of mountain-water-forest-farmland-lake-grass in Altay Prefecture.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y1090245)the Chinese Aviation Propulsion Technology Development Program (No. APTD-11)
文摘An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment tests are time-consuming and incur significant costs; thus, developing a short-period and low-cost numerical method is warranted. Using explicit nonlinear dynamic finite element analysis software, the present study numerically investigated the high-speed impact process for simulated blade containment tests which were carried out on high-speed spin testing facility. A number of simulations were conducted using finite element models with different mesh sizes and different values of both the contact penalty factor and the friction coefficient. Detailed comparisons between the experimental and numerical results reveal that the mesh size and the friction coefficient have a considerable impact on the results produced. It is shown that a finer mesh will predict lower containment capability of the case, which is closer to the test data. A larger value of the friction coefficient also predicts lower containment capability. However, the contact penalty factor has little effect on the simulation results if it is large enough to avoid false penetration.
基金Project supported by the Chinese Aviation Propulsion Technology Development Program (No. APTD-11)the Zhejiang Provincial Natural Science Foundation of China (No. Y1090245)
文摘Disk burst accidents sometimes happen in aeroengines.To avoid tragic consequences,aeroengine casings must have sufficient containment capability.Experiments and simulations need to be conducted to study the impact,distortion,and perforation caused by disk burst and which may give important clues to potential failure mechanisms.This paper presents some containment tests of high-speed rotating disk fragments,in which the original disks were burst into three equal fragments within a predetermined rotating speed range.The failure modes of the containment casing varied significantly with the thickness of the containment casing.Shearing,tearing,tensile fracture,and large plastic stretching deformation occurred in a thin-walled containment casing,while a thick-walled casing could contain disk fragments and withstand large plastic deformation.Numerical simulations were carried out to study the impact process and failure modes further.Good agreement was found between the results of the simulations and the tests.
基金The Science and Technology Project of Xizang Autonomous Region(XZ201901-GA-07)The Key Research and Development Project of Sichuan Science and Technology Department(2021YFQ0042)The Science and Technology Bureau of Altay Region in Yili Kazak Autonomous Prefecture(Y99M4600AL)。
文摘Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has changed significantly due to global warming.Meanwhile,with increasing human activities,the spatiotemporal pattern and driving forces of vegetation variation in the area are uncertain and difficult to accurately assess.Hence,we quantified the vegetation growth by using the Normalized Difference Vegetation Index(NDVI)on the Google Earth Engine(GEE).Then,the spatiotemporal patterns of vegetation from 2000 to 2019 were analyzed at the pixel scale.Finally,significance threshold segmentation was performed using meteorological data based on the correlation analysis results,and the contributions of climate change and human activities to vegetation variation were quantified.The results demonstrated that the vegetation coverage in Altay Prefecture is mainly concentrated in the north.The vegetation areas representing significant restoration and degradation from 2000 to 2019 accounted for 24.08% and 1.24% of Altay Prefecture,respectively.Moreover,spatial correlation analysis showed that the areas with significant correlations between NDVI and temperature,precipitation and sunlight hours accounted for 3.3%,6.9% and 20.3% of Altay Prefecture,respectively.In the significant restoration area,18.94% was dominated by multiple factors,while 3.4% was dominated by human activities,and 1.74% was dominated by climate change.Within the significant degradation area,abnormal degradation and climate change controlled 1.07% and 0.17%,respectively.This study revealed the dynamic changes of vegetation and their driving mechanisms in Altay Prefecture,and can provide scientific support for further research on life community mechanism theory and key remediation technology of mountain-water-forest-farmland-lake-grass in Altay Prefecture.