This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including i...This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including internal stability and external stability, which enables to prove the bounded real lemma for the systems. By means of Riccati equations, infinite horizon linear stochastic state-feedback H∞ control design is also extended to such systems.展开更多
We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of re...We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes(SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimen...In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.60874032 and 70971079
文摘This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including internal stability and external stability, which enables to prove the bounded real lemma for the systems. By means of Riccati equations, infinite horizon linear stochastic state-feedback H∞ control design is also extended to such systems.
基金supported by National Natural Science Foundation of China (Grant Nos. 61573217,11471192 and 11626142)the National High-Level Personnel of Special Support Program,the Chang Jiang Scholar Program of Chinese Education Ministry+2 种基金the Natural Science Foundation of Shandong Province (Grant Nos. JQ201401 and ZR2016AB08)the Colleges and Universities Science and Technology Plan Project of Shandong Province (Grant No. J16LI55)the Fostering Project of Dominant Discipline and Talent Team of Shandong University of Finance and Economics
文摘We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes(SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
基金This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814904the Natural Science Foundation of China under Grant No. 10671112+1 种基金Shandong Province under Grant No. Z2006A01Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060422018
文摘In this paper, tile authors first study two kinds of stochastic differential equations (SDEs) with Levy processes as noise source. Based on the existence and uniqueness of the solutions of these SDEs and multi-dimensional backward stochastic differential equations (BSDEs) driven by Levy pro- cesses, the authors proceed to study a stochastic linear quadratic (LQ) optimal control problem with a Levy process, where the cost weighting matrices of the state and control are allowed to be indefinite. One kind of new stochastic Riccati equation that involves equality and inequality constraints is derived from the idea of square completion and its solvability is proved to be sufficient for the well-posedness and the existence of optimal control which can be of either state feedback or open-loop form of the LQ problems. Moreover, the authors obtain the existence and uniqueness of the solution to the Riccati equation for some special cases. Finally, two examples are presented to illustrate these theoretical results.