The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is deve...The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.展开更多
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy micros...Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 ℃ for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.展开更多
Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as i...Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as in form of aviation fuel. Alternate sources to these non-renewable hydrocarbon fuels are important and necessary. Much of these alternative sources are focused on biomass however, there are strong benefits of deriving fuels from waste plastic materials. Thermal processes can be used to convert waste plastics into hydrocarbon fuels like aviation fuel, which have unlimited applications in airline industries, as well as in transportation and power generation industries. These thermal processes are used to break down the long carbon chains found in plastics into the shorter chains in a temperature range from 300-450 ℃. This method has been carried out in succession in previous experiments. This simple and economically viable process has been developed to convert the hydrocarbon polymers of waste plastics into the short and medium chain hydrocarbons of liquid fuels. Based on the initial characterization, a fractionated portion of the developed fuel shows properties similar to some of the commercially available aviation fuels.展开更多
The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties o...The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.展开更多
Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is chal...Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.展开更多
文摘The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.
文摘Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 ℃ for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.
文摘Aviation fuel is in great demand globally. The increased demand and high price for energy sources are driving efforts to convert natural non-renewable organic compounds into useful hydrocarbon fuel materials such as in form of aviation fuel. Alternate sources to these non-renewable hydrocarbon fuels are important and necessary. Much of these alternative sources are focused on biomass however, there are strong benefits of deriving fuels from waste plastic materials. Thermal processes can be used to convert waste plastics into hydrocarbon fuels like aviation fuel, which have unlimited applications in airline industries, as well as in transportation and power generation industries. These thermal processes are used to break down the long carbon chains found in plastics into the shorter chains in a temperature range from 300-450 ℃. This method has been carried out in succession in previous experiments. This simple and economically viable process has been developed to convert the hydrocarbon polymers of waste plastics into the short and medium chain hydrocarbons of liquid fuels. Based on the initial characterization, a fractionated portion of the developed fuel shows properties similar to some of the commercially available aviation fuels.
基金the National Key R&D Program of China(2018YFA0703400)the Xinghai Science Funds for Distinguished Young Scholars+1 种基金Thousand Youth Talents at Dalian University of Technology,the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,Liaoning BaiQianWan Talents ProgramDalian National Laboratory for Clean Energy(DNL),DNL Cooperation Fund,Chinese Academy of Sciences(DNL180402)。
文摘The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.
基金supported by the Grande Solution Project“HiGradeGas”(48279)Innovation Fund Denmark,exploring NFs-based adsorbents for biogas upgrading and storage+1 种基金the Danish Research Council to provide funding to support fundamental research on electrospinning(8022-00237B)for investigating NFs structures for enzyme immobilization(6111-00232B)。
文摘Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.