Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic ...Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.展开更多
The TDI-CCD imaging method using auto-compensation of velocity-height ratio (VHR) was applied to Chang’E-2 satellite CCD stereo camera.Factors that influence the image quality of the camera were discussed,among which...The TDI-CCD imaging method using auto-compensation of velocity-height ratio (VHR) was applied to Chang’E-2 satellite CCD stereo camera.Factors that influence the image quality of the camera were discussed,among which the mismatch error in VHR was found to be the main cause.An auto-compensation scheme for VHR was developed.The validity and effectiveness were proved by the on-orbit high quality images.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.91338201)
文摘Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.
基金supported by the Chang’E Lunar Exploration Project of Chinathe National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2010AA122200)the National Basic Research Program of China ("973" Project) (Grant No. 2009CB724005)
文摘The TDI-CCD imaging method using auto-compensation of velocity-height ratio (VHR) was applied to Chang’E-2 satellite CCD stereo camera.Factors that influence the image quality of the camera were discussed,among which the mismatch error in VHR was found to be the main cause.An auto-compensation scheme for VHR was developed.The validity and effectiveness were proved by the on-orbit high quality images.