A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the...A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.展开更多
In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm ba...In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.展开更多
Self-localization is a fundamental requirement for the mobile robot. Robot usually contains a large number of dif- ferent sensors, which provide the information of robot localization, and all the sensor information sh...Self-localization is a fundamental requirement for the mobile robot. Robot usually contains a large number of dif- ferent sensors, which provide the information of robot localization, and all the sensor information should be considered for the optimal location. Kalman filter is efficient to realize the information fusion. Used as an efficient sensor fusion algorithm, Kalman filter is an advanced filtering technique which can reduce errors of the position and orientation of the sensors. Kalman filter has been paied much attention to robot automation and solutions to solve uncertainties such as robot localization, navigation, following, tracking, motion control, estimation and prediction. The paper briefly describes Kalman filter theory, and establishes a simple mathematical model based on muti-sensor mobile robot. Meanwhile, Kalman filter is used in robot self-localization by simulations, and it is demonstrated by simulations that Kalman filter is effective.展开更多
By analyzing the relationship among government, market driving forces, distribution orientation of banking industry, service opportunity equality and spatial patterns, this paper proposes that it is distribution orien...By analyzing the relationship among government, market driving forces, distribution orientation of banking industry, service opportunity equality and spatial patterns, this paper proposes that it is distribution orientation that lead to the formation and evolution of spatial pattern of banking industry. The difference of the distribution orientation leads to the separation of the spatial pattern of banking industry, and the change of the distribution orientation leads to the change of spatial pattern. The degree of spatial pattern change is subject to the degree of change of distribution orientation, and the scale of bank resources in the regions, which supports the distribution orientation variation. Based on these theoretical frameworks, some indicators were designed to analyze the pattern change of China′s banking industry and its effects since 1995 under the change of the distribution orientation. This paper finds that the orientation of economic benefit maximization driven by market causes the banking industry to concentrate in economically developed regions.The government, which does not follow the orientation of economic benefit maximization, plays a role of stabilizer. Since the bank branches in the regions with the greatest change in bank branch distribution are too few, and regions with the greatest change in bank loan allocation are the regions with lots of loans, the pattern change of the banking industry in physical form is not as notable as that in economic form.展开更多
A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro...A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.展开更多
In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and positio...In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.展开更多
The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement pr...The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.展开更多
In this paper,we present a method for localization of a rail autonomous pesticide spraying and sampling robot working in greenhouse using an absolute localization system.Design and implementation of the localization s...In this paper,we present a method for localization of a rail autonomous pesticide spraying and sampling robot working in greenhouse using an absolute localization system.Design and implementation of the localization system comes from the usage of beacon systems each of which is composed of an RF single receiver and an ultrasonic transmitter.The RF single receiver gets the synchronization signal from the mobile robot,and the ultrasonic transmitter sends ultrasonic signal,thus the distance from the beacon to the ultrasonic receiver can be measured.The position of a beacon in coordinate system of robot can be calculated according to distance information from the beacons to two ultrasonic receivers which are mounted on the robot.Based on the coordinate transformation,the position of a mobile robot can be calculated from the beacon's absolute position information in the global coordinate system.Experiments demonstrate the effectiveness of the proposed method in real world applications.展开更多
This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon i...This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon is measured by transmitting time of the ultrasonic signal.The measurement time does not cause a high error rate when the mobile robot moves slowly.However,with an increase of the mobile robot’s speed,the localization error becomes too high to use for accurate mobile robot navigation.Therefore,in this research into high speed mobile robot operations,instead of using two active beacons for localization,an active beacon and dual compass are utilized to localize the mobile robot.This new approach resolves the high localization error caused by the speed of the mobile robot.The performance of the precise localization algorithm is verified by comparing it to the conventional method through real-world experiments.展开更多
基金Project(60234030) supported by the National Natural Science Foundation of China
文摘A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.
基金Natural Science Foundation of Shaanxi Province(No.2019JQ-004)Scientific Research Plan Projects of Shaanxi Education Department(No.18JK0438)Youth Talent Promotion Project of Shaanxi Province(No.20180112)。
文摘In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.
基金Research Fund for the Doctoral Program of Higher Education of China(No.20123718120007)
文摘Self-localization is a fundamental requirement for the mobile robot. Robot usually contains a large number of dif- ferent sensors, which provide the information of robot localization, and all the sensor information should be considered for the optimal location. Kalman filter is efficient to realize the information fusion. Used as an efficient sensor fusion algorithm, Kalman filter is an advanced filtering technique which can reduce errors of the position and orientation of the sensors. Kalman filter has been paied much attention to robot automation and solutions to solve uncertainties such as robot localization, navigation, following, tracking, motion control, estimation and prediction. The paper briefly describes Kalman filter theory, and establishes a simple mathematical model based on muti-sensor mobile robot. Meanwhile, Kalman filter is used in robot self-localization by simulations, and it is demonstrated by simulations that Kalman filter is effective.
基金Under the auspices of Key Program of National Natural Science Foundation of China(No.40830741)
文摘By analyzing the relationship among government, market driving forces, distribution orientation of banking industry, service opportunity equality and spatial patterns, this paper proposes that it is distribution orientation that lead to the formation and evolution of spatial pattern of banking industry. The difference of the distribution orientation leads to the separation of the spatial pattern of banking industry, and the change of the distribution orientation leads to the change of spatial pattern. The degree of spatial pattern change is subject to the degree of change of distribution orientation, and the scale of bank resources in the regions, which supports the distribution orientation variation. Based on these theoretical frameworks, some indicators were designed to analyze the pattern change of China′s banking industry and its effects since 1995 under the change of the distribution orientation. This paper finds that the orientation of economic benefit maximization driven by market causes the banking industry to concentrate in economically developed regions.The government, which does not follow the orientation of economic benefit maximization, plays a role of stabilizer. Since the bank branches in the regions with the greatest change in bank branch distribution are too few, and regions with the greatest change in bank loan allocation are the regions with lots of loans, the pattern change of the banking industry in physical form is not as notable as that in economic form.
基金Project(51305328)supported by the National Natural Science Foundation of ChinaProject(2012AA041803)supported by the NationalHigh Technology R&D Program of China+1 种基金Project(GZKF-201210)supported by the Open Fund of State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,ChinaProject(2013M532031)supported by the China Postdoctoral Science Foundation
文摘A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProject(2012AA02A603)supported by the National High Technology Research and Development Program of China+1 种基金Projects(K5051223008,K5051223002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(513***103E)supported by the Pre-Research Project of the"Twelfth Five-Year-Plan"of China
文摘In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.
文摘The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2010-C1090-1021-0010)
文摘In this paper,we present a method for localization of a rail autonomous pesticide spraying and sampling robot working in greenhouse using an absolute localization system.Design and implementation of the localization system comes from the usage of beacon systems each of which is composed of an RF single receiver and an ultrasonic transmitter.The RF single receiver gets the synchronization signal from the mobile robot,and the ultrasonic transmitter sends ultrasonic signal,thus the distance from the beacon to the ultrasonic receiver can be measured.The position of a beacon in coordinate system of robot can be calculated according to distance information from the beacons to two ultrasonic receivers which are mounted on the robot.Based on the coordinate transformation,the position of a mobile robot can be calculated from the beacon's absolute position information in the global coordinate system.Experiments demonstrate the effectiveness of the proposed method in real world applications.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon is measured by transmitting time of the ultrasonic signal.The measurement time does not cause a high error rate when the mobile robot moves slowly.However,with an increase of the mobile robot’s speed,the localization error becomes too high to use for accurate mobile robot navigation.Therefore,in this research into high speed mobile robot operations,instead of using two active beacons for localization,an active beacon and dual compass are utilized to localize the mobile robot.This new approach resolves the high localization error caused by the speed of the mobile robot.The performance of the precise localization algorithm is verified by comparing it to the conventional method through real-world experiments.