This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedo...In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic ch...A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model wi...The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.展开更多
The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the max...The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes.展开更多
In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg l...In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg level. The supervisor level is for the task definition and planning, while the coordinator level does the dynamic stable control and the leg level executes the real-time control command. First, we build the efficient Newton-Euler dynamics equations of the robot. Then, the stability control is realized by properly distributing ground reaction forces applied by the legs. We also use Simplex method to optimize the ground reaction force distribution and verify the control method by experimental and numerical results.展开更多
The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are ...The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.展开更多
Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted probl...Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted problems in a large system. This paper aims to develop a self-sensing GMA. An observer based on piezomagnetic equations is constructed to estimate the stress and strain of the magnetostrictive material. The observer based self-sensing approach depends on the facts that the magnetic field is controllable and that the magnetic induction is measurable. Aiming at the nonlinear hysteresis in magnetization, a hys- teresis compensation observer based on Preisach model is developed. Experiment verified the availability of the observer approach, and the hysteresis compensation observer has higher tracking precision than linear observer for dynamic force sensing.展开更多
Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as...Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data...Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that smafl RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and mmntenance of homeostasis. According to Michaelis-Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.展开更多
A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and...A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined dia- magnetic image current method were utilized to model the interaction forces and torques between the lifting perma- nent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic sub- strates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified b~ fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiff- ness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.展开更多
A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweigh...A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweight and silent, however shows a little short stroke and small attracting force per each unit. In order to achieve enough output force and motion range of each finger, multiple SMA type artificial muscles with special device which facilitates enough length are equipped in the hand. The fundamental properties of the SMA type artificial muscle including output force and electrical response were determined experimentally and considered for the design of hand mechanism. Besides, the structure of each finger and whole system has been designed based on observation of human hand. The electrical hardware to control multiple shape memory alloy type artificial muscles has been also developed. Finally, the usefulness of the prosthetic hand has been investigated through experiments for grasping several types of objects.展开更多
A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on mot...A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.展开更多
Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing t...Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.展开更多
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金Project(2003AA430200) supported by the National Hi-Tech Research and Development Program(863) of China
文摘In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
文摘A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Project supported by the National Natural Science Foundation of China (No. 50477030) the Natural Science Foundation of Zheji-ang Province (No. Y105351), China
文摘The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.
文摘The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes.
文摘In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg level. The supervisor level is for the task definition and planning, while the coordinator level does the dynamic stable control and the leg level executes the real-time control command. First, we build the efficient Newton-Euler dynamics equations of the robot. Then, the stability control is realized by properly distributing ground reaction forces applied by the legs. We also use Simplex method to optimize the ground reaction force distribution and verify the control method by experimental and numerical results.
文摘The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.
基金Project supported by the National Natural Science Foundation ofChina (No. 50105019)the China Postdoctoral Science Foundation (No. 20060390337)
文摘Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted problems in a large system. This paper aims to develop a self-sensing GMA. An observer based on piezomagnetic equations is constructed to estimate the stress and strain of the magnetostrictive material. The observer based self-sensing approach depends on the facts that the magnetic field is controllable and that the magnetic induction is measurable. Aiming at the nonlinear hysteresis in magnetization, a hys- teresis compensation observer based on Preisach model is developed. Experiment verified the availability of the observer approach, and the hysteresis compensation observer has higher tracking precision than linear observer for dynamic force sensing.
文摘Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10802043 and 10832006, Program for Science & Technology Innovation Talents in Universities of Henan under Grant No. 2009HASTIT033 and Key Disciplines of Shanghai municipality ($30104)
文摘Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that smafl RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and mmntenance of homeostasis. According to Michaelis-Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.
基金The National Natural Science Foundation ofChina (No60402003)The Weaponry Pre-liminary Research Foundation of China (No9140A09020706JW0314)
文摘A novel micro-machined diamagnetic stable.levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined dia- magnetic image current method were utilized to model the interaction forces and torques between the lifting perma- nent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic sub- strates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified b~ fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiff- ness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.
文摘A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweight and silent, however shows a little short stroke and small attracting force per each unit. In order to achieve enough output force and motion range of each finger, multiple SMA type artificial muscles with special device which facilitates enough length are equipped in the hand. The fundamental properties of the SMA type artificial muscle including output force and electrical response were determined experimentally and considered for the design of hand mechanism. Besides, the structure of each finger and whole system has been designed based on observation of human hand. The electrical hardware to control multiple shape memory alloy type artificial muscles has been also developed. Finally, the usefulness of the prosthetic hand has been investigated through experiments for grasping several types of objects.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA040203 )the National Natural Science Foundation of China (No. 60775062)the Program for New Century Excellent Talents in University (No. NCET-07-0538).
文摘A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.
基金Funded by the Natural Science Foundation of Hubei Province (No. 2004AA101E04)
文摘Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.