The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and ther...The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result.展开更多
Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fa...Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.展开更多
The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidificati...The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.展开更多
Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponent...Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponential air-compression spring, tire force power function characteristics, and an equivalent three-mass system.Optimization of landing-gear parameters is performed considering the maximum displacement of the landing-gear shock stroke, the maximum landing-gear force and the maximum deformation of the wingtip in the landing impact. Resutls show that landing-gear design parameters have an important influence on the structural flexibility of the airplane. And the landing performance of the landing-gear can be improved by the optimized metering pin type landing-gear.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surf...A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surface hydraulic processes. In this CA model, the hillslope surface was subdivided into a series of discrete spatial cells with the same geometric features. At each time step, water and sediment were transported between two adjacent spatial cells. The flow direction was determined by a combination of water surface slope and stochastic assignment. The amounts of interchanged water and sediment were computed using the Chezy-Manning formula and the empirical sediment transport equation. The water and sediment discharged from the open boundary cells were considered as the runoff and the sediment yields over the entire hillslope surface. Two hillslope soil erosion experiments under simulated rainfall events were carried out. Cumulative runoff and sediment yields were measured, respectively. Then, the CA model was applied to simulate the water and soil erosion for these two experiments. Analysis of simulation results indicated that the size of the spatial cell, hydraulic parameters, and the setting of time step and iteration times had a large impact on the model accuracy. The comparison of the simulated and measured data suggested that the CA model was an applicable alternate for simulating the hillslope water flow and soil erosion.展开更多
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ...A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.展开更多
The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical m...The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical model considering contact loss was built in this work, and the vibration performance of the model under random external Gaussian white noise excitation was investigated by using Monte Carlo simulation in Matlab/Simulink. Simulation showed that the spectral content and statistical characters of the contact force coincided strongly with reality. The random vibration character of the contact system was solved using time (numerical) domain simulation in this paper. Conclusions reached here are of great importance for reliability design of switching apparatus.展开更多
The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An...The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An accurate mechanical model was constructed according to the required structural motion features.Applying multi-degree-of-freedom vibration theory,characteristics of the vibrating screen was analyzed.Kinematics parameters of the vibrating screen which motion traces were linear,circular or elliptical were obtained.The stable solutions of the dynamic equations gave the motions of the vibrating screen by means of computer simulations.Technological parameters,including amplitude,movement velocity and throwing index,of five specific points along the screen surface were gained by theoretical calculation.The results show that the traces of the new designed vibrating screen follow the ideal screening motion.The screening efficiency and processing capacity may thus be effectively improved.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
A multi-body model of engine system with flexible crankshaft was presented in this paper to analyze the dynamic behavior of an internal combustion engine. The flexible crankshaft structural dynamics was coupled with t...A multi-body model of engine system with flexible crankshaft was presented in this paper to analyze the dynamic behavior of an internal combustion engine. The flexible crankshaft structural dynamics was coupled with the main beating hydrodynamic lubrication in this model by a system approach. An application of an 14 engine was given to show this sophisticated simulation model and to predict the loads and the orbit plots in the journal beatings by the dynamic response of the multi-body engine system with flexible crankshaft. The numerical results show the capabilities and significance of the flexible crankshaft in this system. The objective of the research is to provide the scientific guidance for design and maintenance of the internal combustion engine.展开更多
In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom...In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.展开更多
We present the simulation of the dynamics of fluid-cylinder interactions in a narrow three-dimensional channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology combined wi...We present the simulation of the dynamics of fluid-cylinder interactions in a narrow three-dimensional channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology combined with a finite element method and an operator splitting technique. As expected, a settling truncated cylinder turns its broadside perpendicular to the main stream direction and the center of mass moves to the central axis of the channel. In the case of two truncated cylinders, they first move around each other for a while and then stay together in a "T" shape. After the "T" shape has been formed for a long enough time, we found no vortex shedding behind the cylinders. When simulating the fluidization of 60 truncated cylinders, we captured the features of interactions among fluidized cylinders as observed in experiments.展开更多
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province, China
文摘The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result.
文摘Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.
基金Project(10964004) supported by the National Natural Science Foundation of ChinaProject(20070731001) supported by Research Fund for the Doctoral Program of China+1 种基金 Project(096RJZA104) supported by the Natural Science Foundation of Gansu Province,ChinaProject(SB14200801) supported by the Doctoral Fund of Lanzhou University of Technology,China
文摘The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.
文摘Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponential air-compression spring, tire force power function characteristics, and an equivalent three-mass system.Optimization of landing-gear parameters is performed considering the maximum displacement of the landing-gear shock stroke, the maximum landing-gear force and the maximum deformation of the wingtip in the landing impact. Resutls show that landing-gear design parameters have an important influence on the structural flexibility of the airplane. And the landing performance of the landing-gear can be improved by the optimized metering pin type landing-gear.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 40225004)the National Natural Science Foundation of China (No. 40471048)
文摘A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surface hydraulic processes. In this CA model, the hillslope surface was subdivided into a series of discrete spatial cells with the same geometric features. At each time step, water and sediment were transported between two adjacent spatial cells. The flow direction was determined by a combination of water surface slope and stochastic assignment. The amounts of interchanged water and sediment were computed using the Chezy-Manning formula and the empirical sediment transport equation. The water and sediment discharged from the open boundary cells were considered as the runoff and the sediment yields over the entire hillslope surface. Two hillslope soil erosion experiments under simulated rainfall events were carried out. Cumulative runoff and sediment yields were measured, respectively. Then, the CA model was applied to simulate the water and soil erosion for these two experiments. Analysis of simulation results indicated that the size of the spatial cell, hydraulic parameters, and the setting of time step and iteration times had a large impact on the model accuracy. The comparison of the simulated and measured data suggested that the CA model was an applicable alternate for simulating the hillslope water flow and soil erosion.
文摘A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.
基金Project (No. FEBQ24409102) supported by the Space Technology Innovation Fund, China
文摘The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical model considering contact loss was built in this work, and the vibration performance of the model under random external Gaussian white noise excitation was investigated by using Monte Carlo simulation in Matlab/Simulink. Simulation showed that the spectral content and statistical characters of the contact force coincided strongly with reality. The random vibration character of the contact system was solved using time (numerical) domain simulation in this paper. Conclusions reached here are of great importance for reliability design of switching apparatus.
基金Projects 50574091 and 50774084 supported by the National Natural Science Foundation of China
文摘The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An accurate mechanical model was constructed according to the required structural motion features.Applying multi-degree-of-freedom vibration theory,characteristics of the vibrating screen was analyzed.Kinematics parameters of the vibrating screen which motion traces were linear,circular or elliptical were obtained.The stable solutions of the dynamic equations gave the motions of the vibrating screen by means of computer simulations.Technological parameters,including amplitude,movement velocity and throwing index,of five specific points along the screen surface were gained by theoretical calculation.The results show that the traces of the new designed vibrating screen follow the ideal screening motion.The screening efficiency and processing capacity may thus be effectively improved.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
基金Project 50375115 supported by the National Natural Science Foundation of China
文摘A multi-body model of engine system with flexible crankshaft was presented in this paper to analyze the dynamic behavior of an internal combustion engine. The flexible crankshaft structural dynamics was coupled with the main beating hydrodynamic lubrication in this model by a system approach. An application of an 14 engine was given to show this sophisticated simulation model and to predict the loads and the orbit plots in the journal beatings by the dynamic response of the multi-body engine system with flexible crankshaft. The numerical results show the capabilities and significance of the flexible crankshaft in this system. The objective of the research is to provide the scientific guidance for design and maintenance of the internal combustion engine.
文摘In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.
文摘We present the simulation of the dynamics of fluid-cylinder interactions in a narrow three-dimensional channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology combined with a finite element method and an operator splitting technique. As expected, a settling truncated cylinder turns its broadside perpendicular to the main stream direction and the center of mass moves to the central axis of the channel. In the case of two truncated cylinders, they first move around each other for a while and then stay together in a "T" shape. After the "T" shape has been formed for a long enough time, we found no vortex shedding behind the cylinders. When simulating the fluidization of 60 truncated cylinders, we captured the features of interactions among fluidized cylinders as observed in experiments.