A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction a...A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.展开更多
Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platfor...Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.展开更多
This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutane...This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.展开更多
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were...Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.展开更多
A lower-part humanoid robot CHP-1 with 12 degree-of-freedom of motion has been developed for cooperative motion,such as pushing or lifting an object.The capability of the robot is mainly dependent on the performance o...A lower-part humanoid robot CHP-1 with 12 degree-of-freedom of motion has been developed for cooperative motion,such as pushing or lifting an object.The capability of the robot is mainly dependent on the performance of the motors,thus the motors need to be properly selected.For the purpose,the kinematics of the robot was analyzed,and a number of simulations for two kinds of cooperative motions were carried out.The torques required at each motor of the robot under external forces were obtained.Here,the external forces were also estimated through simulation and literature survey.On the basis of the torques found,the selection of motors was finally suggested,and the motors are to be installed to the humanoid robot.展开更多
The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon ...The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.展开更多
A novel hyper-redundant manipulator named RT1 is designed and studied. The unique feature of RT1 is all degrees of freedom (DOF) are actuated with only one motor via special designed hinge bar universal joints. The me...A novel hyper-redundant manipulator named RT1 is designed and studied. The unique feature of RT1 is all degrees of freedom (DOF) are actuated with only one motor via special designed hinge bar universal joints. The mechanisms of RT1 are introduced in detail. Some experiments are carried out in order to test the movability and adaptability of the manipulator. RT1 is actuated by pulse string and acts discretely. The discrete working space of RT1 is described and the parameter optimization for kinematical redundancy resolution is studied also. The optimization criterion is altering the design parameter as little as possible during manipulator's motion from the initial position to the expected position. An optimization example is given that is realized with Matlab optimize tool-box.展开更多
Objective. The purpose of the study was to build up an animal model of mitochondrial myopathy in order to analyse the pathogenesis of the disease. Methods. The skeletal muscles from Wistar rats treated with germanium ...Objective. The purpose of the study was to build up an animal model of mitochondrial myopathy in order to analyse the pathogenesis of the disease. Methods. The skeletal muscles from Wistar rats treated with germanium dioxide for 24 weeks were analysed by histopathologic and electron- microscopic studies. A quantitative analysis was carried out in mitochondrial DNAs of these samples. The biological function of the model was determined. Results. An animal model of mitochondrial myopathy was built up, in which oxygen free radicals were increased and mitochondrial DNA copies were decreased contrasted with controls. Conclusion. It suggested that environmental toxin may play a role in the pathogenesis of mitochondrial myopathy. The increase of oxygen free radicals is an important link causing the disease.展开更多
An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H...An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.展开更多
The interfering kinetics of the coherent synchronous reactions of hydrogen peroxide decomposition and the oxidation of pyridine derivatives have been studied experimentally. The regions of the selective oxidation of t...The interfering kinetics of the coherent synchronous reactions of hydrogen peroxide decomposition and the oxidation of pyridine derivatives have been studied experimentally. The regions of the selective oxidation of the pyridine derivatives have been found, and the optimal conditions for the production of4-vynilpyridine, 4-vynilpyridine N-monoxide, 2, 2-dipyridyl, and pyridine have been determined. The most probable synchronization mechanism is suggested for hydrogen peroxide decomposition and the free-radical chain oxidation of pyridine derivatives. The HO2 -radical plays the key role in this mechanism. The activation energies are calculated for the elementary steps of 4-ethylpyridine dehydrogenation.展开更多
We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips....We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips. In such systems one can consider a possibility for phase slips to be created not only due to thermal but also due to quantum fluctuations of a superconducting order parameter. We obtain some expressions of the free energy, the entropy, the specific heat and the bias current, respectively. The bias current I is a function of the temperature and the length of superconducting nanowires, and has a quantum phase slip. We obtain the stochastic dynamics of superconductiveresistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations, and obtain the distribution of switching currents. Our results can be verified in modern experiments with superconducting nanowires.展开更多
Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. O...Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.展开更多
A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of ...A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.展开更多
Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links ...Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.展开更多
Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to...Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to discovery the motion transfer can be carried out by Assur structural group in the form of the mobile closed contour, and the output link is the link with one degree of freedom. The received mechanical system includes an input link, an output link and the closed contour placed between them as fourth class Assur structural group. The kinematic chain has two degrees of freedom. However the closed contour imposes an additional constraint on relative motion of its links. The carried out discovery allows providing the variable transfer ratio only due to the variable external load. Mechanical properties of the closed contour allow providing the required transfer ratio independently, smart and automatically.展开更多
Preliminary design and simulation of a free piston engine suitable for small-scale energy production in distributed energy systems is presented in this paper.The properties,particularly the properties of gas seals of ...Preliminary design and simulation of a free piston engine suitable for small-scale energy production in distributed energy systems is presented in this paper.The properties,particularly the properties of gas seals of the engine are simulated using a simulation program developed for this case,and the results are utilized in preliminary main design parameter selection.The engine simulation program was developed by combining and modifying the source codes of the simulation and calculation programs obtained from Helsinki University of Technology,Tampere University of Technology,and Lappeenranta University of Technology.Because of the contact-free labyrinth seal used in the piston,the efficiency of the motor is lower than the efficiency of a conventional motor with oil lubricated piston rings.On the other hand,the lack of bearing losses,and the lack of losses associated with a crankshaft system and a gearbox,as well as the lack of lubrication oil expenses,compensates this effect.As a net result,this new motor would perform slightly better than the conventional one.Being completely oil-free,it is very environmentally friendly,and its exhaust gases are completely free of oil residuals which are causing problems in normal gas motors.展开更多
The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degre...The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.展开更多
The reaction mechanism and kinetics for the addition of hydroxyl radical (OH) to phenol have been investigated using the hybrid density functional (B3LYP) method with the 6-31++G(2dp, 2dr) basis set and the co...The reaction mechanism and kinetics for the addition of hydroxyl radical (OH) to phenol have been investigated using the hybrid density functional (B3LYP) method with the 6-31++G(2dp, 2dr) basis set and the complete basis set (CBS) method using APNO basis sets, respectively. The equilibrium geometries, energies, and thermodynamics properties of all the stationary points along the addition reaction pathway are calculated. The rate constants and the branching ratios of each channel are evaluated using classical transition state theory (TST) in the temperature range of 210 to 360 K, to simulate temperatures in all parts of the troposphere. The ortho addition pathway is dominant and accounts for 99.8%-96.7% of the overall adduct products from 210 to 360 K. The calculated rate constants are in good agreement with existing experimental values. The addition reaction is irreversible.展开更多
文摘A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.
基金Project(2014QNB18) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CBO46300) supported by the National Basic Research Program of China
文摘Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.
文摘This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.
基金Project(51075350)supported by the National Natural Science Foundation of China
文摘Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘A lower-part humanoid robot CHP-1 with 12 degree-of-freedom of motion has been developed for cooperative motion,such as pushing or lifting an object.The capability of the robot is mainly dependent on the performance of the motors,thus the motors need to be properly selected.For the purpose,the kinematics of the robot was analyzed,and a number of simulations for two kinds of cooperative motions were carried out.The torques required at each motor of the robot under external forces were obtained.Here,the external forces were also estimated through simulation and literature survey.On the basis of the torques found,the selection of motors was finally suggested,and the motors are to be installed to the humanoid robot.
基金Project(51275451)supported by the National Natural Science Foundation of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China+1 种基金Project(2013CB035400)supported by the National Basic Research Program of ChinaProject(2011BAK03B09)supported by the National Key Technology R&D Program of China
文摘The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.
文摘A novel hyper-redundant manipulator named RT1 is designed and studied. The unique feature of RT1 is all degrees of freedom (DOF) are actuated with only one motor via special designed hinge bar universal joints. The mechanisms of RT1 are introduced in detail. Some experiments are carried out in order to test the movability and adaptability of the manipulator. RT1 is actuated by pulse string and acts discretely. The discrete working space of RT1 is described and the parameter optimization for kinematical redundancy resolution is studied also. The optimization criterion is altering the design parameter as little as possible during manipulator's motion from the initial position to the expected position. An optimization example is given that is realized with Matlab optimize tool-box.
基金This study was supported by the National Natural Sciences Foundation of China (No. 39470260)
文摘Objective. The purpose of the study was to build up an animal model of mitochondrial myopathy in order to analyse the pathogenesis of the disease. Methods. The skeletal muscles from Wistar rats treated with germanium dioxide for 24 weeks were analysed by histopathologic and electron- microscopic studies. A quantitative analysis was carried out in mitochondrial DNAs of these samples. The biological function of the model was determined. Results. An animal model of mitochondrial myopathy was built up, in which oxygen free radicals were increased and mitochondrial DNA copies were decreased contrasted with controls. Conclusion. It suggested that environmental toxin may play a role in the pathogenesis of mitochondrial myopathy. The increase of oxygen free radicals is an important link causing the disease.
基金Project(2013CB035504)supported by the National Basic Research Program of China
文摘An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.
文摘The interfering kinetics of the coherent synchronous reactions of hydrogen peroxide decomposition and the oxidation of pyridine derivatives have been studied experimentally. The regions of the selective oxidation of the pyridine derivatives have been found, and the optimal conditions for the production of4-vynilpyridine, 4-vynilpyridine N-monoxide, 2, 2-dipyridyl, and pyridine have been determined. The most probable synchronization mechanism is suggested for hydrogen peroxide decomposition and the free-radical chain oxidation of pyridine derivatives. The HO2 -radical plays the key role in this mechanism. The activation energies are calculated for the elementary steps of 4-ethylpyridine dehydrogenation.
基金Supported by the National Natural Science Foundation of China under Grant No. 10974167
文摘We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips. In such systems one can consider a possibility for phase slips to be created not only due to thermal but also due to quantum fluctuations of a superconducting order parameter. We obtain some expressions of the free energy, the entropy, the specific heat and the bias current, respectively. The bias current I is a function of the temperature and the length of superconducting nanowires, and has a quantum phase slip. We obtain the stochastic dynamics of superconductiveresistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations, and obtain the distribution of switching currents. Our results can be verified in modern experiments with superconducting nanowires.
文摘Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.
文摘A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.
文摘Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.
文摘Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to discovery the motion transfer can be carried out by Assur structural group in the form of the mobile closed contour, and the output link is the link with one degree of freedom. The received mechanical system includes an input link, an output link and the closed contour placed between them as fourth class Assur structural group. The kinematic chain has two degrees of freedom. However the closed contour imposes an additional constraint on relative motion of its links. The carried out discovery allows providing the variable transfer ratio only due to the variable external load. Mechanical properties of the closed contour allow providing the required transfer ratio independently, smart and automatically.
基金Project is financed by the Technology Development Center of Finland (Tekes)
文摘Preliminary design and simulation of a free piston engine suitable for small-scale energy production in distributed energy systems is presented in this paper.The properties,particularly the properties of gas seals of the engine are simulated using a simulation program developed for this case,and the results are utilized in preliminary main design parameter selection.The engine simulation program was developed by combining and modifying the source codes of the simulation and calculation programs obtained from Helsinki University of Technology,Tampere University of Technology,and Lappeenranta University of Technology.Because of the contact-free labyrinth seal used in the piston,the efficiency of the motor is lower than the efficiency of a conventional motor with oil lubricated piston rings.On the other hand,the lack of bearing losses,and the lack of losses associated with a crankshaft system and a gearbox,as well as the lack of lubrication oil expenses,compensates this effect.As a net result,this new motor would perform slightly better than the conventional one.Being completely oil-free,it is very environmentally friendly,and its exhaust gases are completely free of oil residuals which are causing problems in normal gas motors.
基金supported by the Joint Training Doctoral Project of China Scholarship CouncilFunds for the Central Universities (Grant No. 3202003905)Scientific Innovation research of College Graduates in Jiangsu Province (Grant No. CXLX12_0080)
文摘The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.
基金supported by the National Natural Science Foundation of China (20977064)
文摘The reaction mechanism and kinetics for the addition of hydroxyl radical (OH) to phenol have been investigated using the hybrid density functional (B3LYP) method with the 6-31++G(2dp, 2dr) basis set and the complete basis set (CBS) method using APNO basis sets, respectively. The equilibrium geometries, energies, and thermodynamics properties of all the stationary points along the addition reaction pathway are calculated. The rate constants and the branching ratios of each channel are evaluated using classical transition state theory (TST) in the temperature range of 210 to 360 K, to simulate temperatures in all parts of the troposphere. The ortho addition pathway is dominant and accounts for 99.8%-96.7% of the overall adduct products from 210 to 360 K. The calculated rate constants are in good agreement with existing experimental values. The addition reaction is irreversible.