【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,T...【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,TTC)指标不适于评估交叉口左转非机动车冲突的问题,考虑非机动车车辆尺寸与加速度对交通冲突的影响,采用拓展碰撞时间指标,评估交叉口非机动车交通冲突。收集长沙市4个信号交叉口的视频大数据,利用视频软件Tracker提取车辆微观轨迹后,开展案例分析。【结果】左转非机动车信号灯在时间上明确了非机动车的通行权,其设置能显著降低非机动车冲突率,在平峰、高峰时段非机动车冲突率分别降低了40.11%、25.27%。在直行相位末期、左转相位即将启亮时,设置组的左转非机动车在待行区等待,冲突率降为0;而对比组近50%的非机动车违规左转,冲突严重。设置左转非机动车信号灯的改善效果随非机动车流量的增大呈先增加后降低趋势,而随机动车流量的增大呈逐步波动下降趋势。【结论】本研究揭示了非机动车左转信号灯的设置对减少交叉口交通冲突的影响,可为城市交叉口非机动车交通安全管控提供有益参考。展开更多
Aiming at prevalent violations of non-motorists at urban intersections in China, this paper intends to clarify the characteristics and risks of non-motorist violations at signalized intersections through questionnaire...Aiming at prevalent violations of non-motorists at urban intersections in China, this paper intends to clarify the characteristics and risks of non-motorist violations at signalized intersections through questionnaires and video recordings, which may serve as a basis for non-motorized vehicle management. It can help improve the traffic order and enhance the degree of safety at signalized intersections. To obtain the perception information, a questionaire survey on the Internet was conducted and 972 valid questionnaires were returned. It is found that academic degree contributes little to non-motorist violations, while electrical bicyclists have a relatively higher frequency of violations compared with bicyclists. The video data of 18 228 non-motorist behaviors indicate that the violation rate of all non-motorists is 26.5%; the number of conflicts reaches 1 938, among which violation conflicts account for 66.8%. The study shows that the violation rates and the violation behavior at three types of surveyed intersections are markedly different. It is also concluded that the conflict rates and the violation rates are positively correlated. Furthermore, signal violation, traveling in the wrong direction, and overspeeding to cross the intersection are the most dangerous among traffic violation behaviors.展开更多
The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out ...The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out with the module design concept of both software and hardware. Nevertheless, a scheme of the sensorless direct torque control is based on the developed hardware, of which the feasibility is tested by a trial program. Additionally, both the interface function of the drive hardware and the feasibility of its software are proved to be good by the trail programs. A test motor can run about 18?r/min by a variable frequency program with the space vector pulse width modulation technology, of which the torque is visible pulsatile. In this presentation, based on the theoretical approach, the sensorless torque control is to be studied and applied to electric vehicles, of which the quick, smooth and stable torque response is emphasized because it quite benefits improving the drive performance of electric vehicles.展开更多
文摘【目的】对城市交叉口采用的左转非机动车信号灯设施进行交通安全性量化评估。【方法】提出一种基于拓展碰撞时间(extended time to collision,ETTC)指标的左转非机动车信号灯安全效应评估方法。针对现有的碰撞时间(time to collision,TTC)指标不适于评估交叉口左转非机动车冲突的问题,考虑非机动车车辆尺寸与加速度对交通冲突的影响,采用拓展碰撞时间指标,评估交叉口非机动车交通冲突。收集长沙市4个信号交叉口的视频大数据,利用视频软件Tracker提取车辆微观轨迹后,开展案例分析。【结果】左转非机动车信号灯在时间上明确了非机动车的通行权,其设置能显著降低非机动车冲突率,在平峰、高峰时段非机动车冲突率分别降低了40.11%、25.27%。在直行相位末期、左转相位即将启亮时,设置组的左转非机动车在待行区等待,冲突率降为0;而对比组近50%的非机动车违规左转,冲突严重。设置左转非机动车信号灯的改善效果随非机动车流量的增大呈先增加后降低趋势,而随机动车流量的增大呈逐步波动下降趋势。【结论】本研究揭示了非机动车左转信号灯的设置对减少交叉口交通冲突的影响,可为城市交叉口非机动车交通安全管控提供有益参考。
基金The National Key Technology R&D Program during the 11th Five-Year Plan Period(No.2009BAG13A05)the National Natural Science Foundation of China(No.51078086)
文摘Aiming at prevalent violations of non-motorists at urban intersections in China, this paper intends to clarify the characteristics and risks of non-motorist violations at signalized intersections through questionnaires and video recordings, which may serve as a basis for non-motorized vehicle management. It can help improve the traffic order and enhance the degree of safety at signalized intersections. To obtain the perception information, a questionaire survey on the Internet was conducted and 972 valid questionnaires were returned. It is found that academic degree contributes little to non-motorist violations, while electrical bicyclists have a relatively higher frequency of violations compared with bicyclists. The video data of 18 228 non-motorist behaviors indicate that the violation rate of all non-motorists is 26.5%; the number of conflicts reaches 1 938, among which violation conflicts account for 66.8%. The study shows that the violation rates and the violation behavior at three types of surveyed intersections are markedly different. It is also concluded that the conflict rates and the violation rates are positively correlated. Furthermore, signal violation, traveling in the wrong direction, and overspeeding to cross the intersection are the most dangerous among traffic violation behaviors.
文摘The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out with the module design concept of both software and hardware. Nevertheless, a scheme of the sensorless direct torque control is based on the developed hardware, of which the feasibility is tested by a trial program. Additionally, both the interface function of the drive hardware and the feasibility of its software are proved to be good by the trail programs. A test motor can run about 18?r/min by a variable frequency program with the space vector pulse width modulation technology, of which the torque is visible pulsatile. In this presentation, based on the theoretical approach, the sensorless torque control is to be studied and applied to electric vehicles, of which the quick, smooth and stable torque response is emphasized because it quite benefits improving the drive performance of electric vehicles.