In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization mod...In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization modeling, to be used in the preliminary design phase, for the turbine cover plate of an aero-engine. The parameterization modeling of the turbine cover plate is achieved by using commercial CAD (computer aided design) software processing in batch mode. Two main approaches are presented the outer face and the skeleton models. These models can then be integrated into an iterative process for designing optimal shapes. Both models are capable of reproducing existing cover plate with reasonable accuracy in relatively shorter time periods. However, the skeleton approach provides probably the best results in terms of flexibility and accuracy, but increases programming complexity and requires greater run times.展开更多
The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was propo...The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.展开更多
文摘In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization modeling, to be used in the preliminary design phase, for the turbine cover plate of an aero-engine. The parameterization modeling of the turbine cover plate is achieved by using commercial CAD (computer aided design) software processing in batch mode. Two main approaches are presented the outer face and the skeleton models. These models can then be integrated into an iterative process for designing optimal shapes. Both models are capable of reproducing existing cover plate with reasonable accuracy in relatively shorter time periods. However, the skeleton approach provides probably the best results in terms of flexibility and accuracy, but increases programming complexity and requires greater run times.
基金Project(70004782) supported by the Regional Strategic Technology Development Program of the Ministry of Knowledge Economy(MKE) of KoreaProject(2011-0017407) supported by the National Research Foundation of Korea (NRF) Funded by the Korea Government (MEST)
文摘The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.