The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens...The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network m...Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.展开更多
A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscop...A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscope that wireless module is used for conanunicating and power transfer. The fabricated micro robot system is detailedly described, including structure, micro robot locomotion principle, communication control module and wireless power transfer module. The experimental results show that the driving force of the linear actuator can reach to 2. S5 N and supplying power is up to 480 mW DC power for receiving coil in the proposed system, which all fulfill the need of the micro robot system. The micro robot can creep reliably in the large intestine of pig and other contact environments.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
A practical serf-localization scheme for mobile robots is proposed and implemented by utilizing sonar sensors. Specifically, the localization problem is solved by employing Monte Carlo method with a new mechanism prop...A practical serf-localization scheme for mobile robots is proposed and implemented by utilizing sonar sensors. Specifically, the localization problem is solved by employing Monte Carlo method with a new mechanism proposed to calculate the samples' weights; the convergence and veracity of the sample set are guaranteed by the designed resampling and scattering process. The proposed serf-localization algorithm is fully implemented on a specific mobile robot system, and experimental results illustrate that it provides an efficient solution for the kidnapped problem.展开更多
A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion u...A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.展开更多
Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers stud...Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.展开更多
There are many robotic platforms usable in the educational process. In the introduction, some of the educational platforms are presented. The main body of this paper deals with educational robotic platform iRobot Crea...There are many robotic platforms usable in the educational process. In the introduction, some of the educational platforms are presented. The main body of this paper deals with educational robotic platform iRobot Create. In this paper, main parts of this platform are described, such as mechanics, sensors and actuators. The software equipment with communication protocol of this platform is also described. The results of the analysis of this platform show its rich possibilities in its use in educational process such as mechanics, electronics and algorithms used in robotics.展开更多
With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ab...With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.展开更多
One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper pr...One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper proposed a method using face detection to predict the data of image sensor. The experimental results show that, the proposed algorithm is practical and reliable, and good outcome have been achieved in the application of instruction robot.展开更多
Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction...Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.展开更多
To meet stringent requirements in vacuum and cleanness for semiconductor manufacturing, a new power drive module for Selective Compliant Assembly Robot Arm (SCARA) type robot has been developed for wafer-transfer. I...To meet stringent requirements in vacuum and cleanness for semiconductor manufacturing, a new power drive module for Selective Compliant Assembly Robot Arm (SCARA) type robot has been developed for wafer-transfer. In order to obtain complete hermetic volume for higher vacuum and prevent leakage of hazardous gases, feedthrough motions involving transfer between the vacuum and motors are achieved by the use of metal bellows and magnetic coupling. An analysis of the coaxial-type magnetic coupling by employing the technique of current sheet model is presented. This approach is proved to be a precise and easy method. The construction of power drive module shows its advantage in maintaining ultrahigh vacuum and also enhances the efficiency for transporting the wafer, as compared with conventional design.展开更多
Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TE...Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TENG),a flexible self-powered tactile sensor composed of micro-frustum-arrays-structured polydimethylsiloxane(PDMS)film/copper(Cu)electrodes,and poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE))nanofibers has been demonstrated.The TENG-based self-powered tactile sensor can generate electrical signals through the contact-separation process of two triboelectric layers under external mechanical stimuli.Due to the uniform and controllable micro-frustum-arrays structure fabricated by micro-electro-mechanical system(MEMS)process and the P(VDF-TrFE)nanofibers fabricated by electrostatic spinning,the flexible PDMS-based sensor presents high sensitivity of 2.97 V kPa^-1,stability of 40,000 cycles(no significant decay),response time of 60 ms at 1 Hz,low detection pressure of a water drop(~4 Pa,35 mg)and good linearity of 0.99231 in low pressure region.Since the PDMS film presents ultra-flexibility and excellent-biocompatibility,the sensor can be comfortably attached on human body.Furthermore,the tactile sensor can recognize various types of human body movements by the corresponding electrical signals.Therefore,the as-prepared TENGs are potential on the prospects of gesture detection,health assessment,human-machine interfaces and so on.展开更多
Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile d...Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile device, have remarkable potential for sensing applications. A growing set of physical-co-chemical sensors have been embedded; these include accelerometers, microphones, cameras, gyroscopes, and GPS units to access and perform data analysis. In this review, we discuss recent work focusing on smartphone sensing including representative electromag- netic, audio frequency, optical, and electrochemical sen- sors. The development of these capabilities will lead to more compact, lightweight, cost-effective, flexible, and durable devices in terms of their performances.展开更多
文摘The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
基金Project supported by the National Natural Science Foundation of China (No. 60105003) and the Natural Science Foundation of Zhejiang Province (No. 600025), China
文摘Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.
基金National Natural Science Foundation of China(No.30570485)National High Technology Research and Development Program of China(No.2006AA04Z368)
文摘A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscope that wireless module is used for conanunicating and power transfer. The fabricated micro robot system is detailedly described, including structure, micro robot locomotion principle, communication control module and wireless power transfer module. The experimental results show that the driving force of the linear actuator can reach to 2. S5 N and supplying power is up to 480 mW DC power for receiving coil in the proposed system, which all fulfill the need of the micro robot system. The micro robot can creep reliably in the large intestine of pig and other contact environments.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Supported by the National Natural Science Foundation of China (No. 60875055)Natural Science Foundation of Tianjin (No. 07JCY-BJC05400)Program for New Century Excellent Talents in University (No. NCET-06-0210)
文摘A practical serf-localization scheme for mobile robots is proposed and implemented by utilizing sonar sensors. Specifically, the localization problem is solved by employing Monte Carlo method with a new mechanism proposed to calculate the samples' weights; the convergence and veracity of the sample set are guaranteed by the designed resampling and scattering process. The proposed serf-localization algorithm is fully implemented on a specific mobile robot system, and experimental results illustrate that it provides an efficient solution for the kidnapped problem.
文摘A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.
基金National Natural Science Foundation of China(Nos.51475328,61372143,61671321)
文摘Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.
文摘There are many robotic platforms usable in the educational process. In the introduction, some of the educational platforms are presented. The main body of this paper deals with educational robotic platform iRobot Create. In this paper, main parts of this platform are described, such as mechanics, sensors and actuators. The software equipment with communication protocol of this platform is also described. The results of the analysis of this platform show its rich possibilities in its use in educational process such as mechanics, electronics and algorithms used in robotics.
文摘With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.
文摘One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper proposed a method using face detection to predict the data of image sensor. The experimental results show that, the proposed algorithm is practical and reliable, and good outcome have been achieved in the application of instruction robot.
文摘Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.
文摘To meet stringent requirements in vacuum and cleanness for semiconductor manufacturing, a new power drive module for Selective Compliant Assembly Robot Arm (SCARA) type robot has been developed for wafer-transfer. In order to obtain complete hermetic volume for higher vacuum and prevent leakage of hazardous gases, feedthrough motions involving transfer between the vacuum and motors are achieved by the use of metal bellows and magnetic coupling. An analysis of the coaxial-type magnetic coupling by employing the technique of current sheet model is presented. This approach is proved to be a precise and easy method. The construction of power drive module shows its advantage in maintaining ultrahigh vacuum and also enhances the efficiency for transporting the wafer, as compared with conventional design.
基金financially supported by the National Natural Science Foundation of China(51605449,51675493 and51705476)the National Key R&D Program of China(2018YFF0300605)+2 种基金Shanxi “1331 Project” Key Subject Construction(1331KSC)the Applied Fundamental Research Program of Shanxi Province(201601D021070)Zhangjiakou Science and Technology Research and Development Plan of Zhangjiakou City(1811009B-10)
文摘Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TENG),a flexible self-powered tactile sensor composed of micro-frustum-arrays-structured polydimethylsiloxane(PDMS)film/copper(Cu)electrodes,and poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE))nanofibers has been demonstrated.The TENG-based self-powered tactile sensor can generate electrical signals through the contact-separation process of two triboelectric layers under external mechanical stimuli.Due to the uniform and controllable micro-frustum-arrays structure fabricated by micro-electro-mechanical system(MEMS)process and the P(VDF-TrFE)nanofibers fabricated by electrostatic spinning,the flexible PDMS-based sensor presents high sensitivity of 2.97 V kPa^-1,stability of 40,000 cycles(no significant decay),response time of 60 ms at 1 Hz,low detection pressure of a water drop(~4 Pa,35 mg)and good linearity of 0.99231 in low pressure region.Since the PDMS film presents ultra-flexibility and excellent-biocompatibility,the sensor can be comfortably attached on human body.Furthermore,the tactile sensor can recognize various types of human body movements by the corresponding electrical signals.Therefore,the as-prepared TENGs are potential on the prospects of gesture detection,health assessment,human-machine interfaces and so on.
文摘Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile device, have remarkable potential for sensing applications. A growing set of physical-co-chemical sensors have been embedded; these include accelerometers, microphones, cameras, gyroscopes, and GPS units to access and perform data analysis. In this review, we discuss recent work focusing on smartphone sensing including representative electromag- netic, audio frequency, optical, and electrochemical sen- sors. The development of these capabilities will lead to more compact, lightweight, cost-effective, flexible, and durable devices in terms of their performances.