To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err...To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the ...Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the process of moving back to the taking-end and the mechanical arm has so many freedoms that its control system is relatively complex.Based on the translating cam principle,a novel palletizing robot is designed.The horizontal movement of the palletizing mechanical arm is controlled by changeable outer slides,and the vertical movement is controlled by partitioned up-and-down spindles.To improve palletizing efficiency,the single palletizing mechanical arm is changed into multi-arm.Moreover,to improve its kinematic properties,the acceleration operating performance,joint driving force and palletizing trajectory are optimized through the multi-objective delaminating sequence method.According to the optimization results,the 3D model of the multi-arm palletizing robot is built in Pro/E,and the kinematic simulation is made.The simulation results show that the novel mechanism and optimization parameters are rational and feasible.This novel palletizing robot has the advantages of cam mechanism,so it simplifies the driving mode of palletizing movement and can lower the requirements for controlling system.At the same time,it can increase palletizing efficiency further by adding mechanical arms.展开更多
This paper presents a novel remote controlled dexterous robot arm with 6 degrees of freedom (DOF). As a highly integrated mechatronics system, sensors and their signal processing system are integrated inside each jo...This paper presents a novel remote controlled dexterous robot arm with 6 degrees of freedom (DOF). As a highly integrated mechatronics system, sensors and their signal processing system are integrated inside each joint. To lighten the weight, almost all mechanical parts are made of aluminum and the robot control system is placed outside. The modular concept is adopted during the robot design process for time and cost saving. Considering the much greater torque acted on the two shoulder joints, the joint shells are strengthened in the design to increase joint stiffness and suppress system vibration. Meanwhile, to simplify the maintenance, a new spring pins electronic connector is designed to disassemble every joint, connector and link independently without cutting any cables. The teleoperation technology enables the robot to offer more convenient service definitely for people' s daily life. Virtual reality technology is used to solve the time delay problem during teleoperation. Finally, two typical daily chore experiments are implemented to prove the manipulation ability of the dexterous robot arm.展开更多
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o...This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.展开更多
文摘To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Supported by Natural Science Foundation of Shandong Province,China(No.ZR2010EM007)Shandong Province Science and Technology Development Plan(No.2010GGX10402)
文摘Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the process of moving back to the taking-end and the mechanical arm has so many freedoms that its control system is relatively complex.Based on the translating cam principle,a novel palletizing robot is designed.The horizontal movement of the palletizing mechanical arm is controlled by changeable outer slides,and the vertical movement is controlled by partitioned up-and-down spindles.To improve palletizing efficiency,the single palletizing mechanical arm is changed into multi-arm.Moreover,to improve its kinematic properties,the acceleration operating performance,joint driving force and palletizing trajectory are optimized through the multi-objective delaminating sequence method.According to the optimization results,the 3D model of the multi-arm palletizing robot is built in Pro/E,and the kinematic simulation is made.The simulation results show that the novel mechanism and optimization parameters are rational and feasible.This novel palletizing robot has the advantages of cam mechanism,so it simplifies the driving mode of palletizing movement and can lower the requirements for controlling system.At the same time,it can increase palletizing efficiency further by adding mechanical arms.
文摘This paper presents a novel remote controlled dexterous robot arm with 6 degrees of freedom (DOF). As a highly integrated mechatronics system, sensors and their signal processing system are integrated inside each joint. To lighten the weight, almost all mechanical parts are made of aluminum and the robot control system is placed outside. The modular concept is adopted during the robot design process for time and cost saving. Considering the much greater torque acted on the two shoulder joints, the joint shells are strengthened in the design to increase joint stiffness and suppress system vibration. Meanwhile, to simplify the maintenance, a new spring pins electronic connector is designed to disassemble every joint, connector and link independently without cutting any cables. The teleoperation technology enables the robot to offer more convenient service definitely for people' s daily life. Virtual reality technology is used to solve the time delay problem during teleoperation. Finally, two typical daily chore experiments are implemented to prove the manipulation ability of the dexterous robot arm.
文摘This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.