面向柑橘采摘,构建以上位机、RealSense Camera R200深度相机、VS-6556垂直多关节工业用机械臂、三指柔性手爪等组成的采摘机器人硬件平台。以Windows10为开发环境,采用librealsense相机软件开发工具包、OpenCV计算机视觉库、TensorFlow...面向柑橘采摘,构建以上位机、RealSense Camera R200深度相机、VS-6556垂直多关节工业用机械臂、三指柔性手爪等组成的采摘机器人硬件平台。以Windows10为开发环境,采用librealsense相机软件开发工具包、OpenCV计算机视觉库、TensorFlow-GPU和Keras深度学习框架、ORIN2机械臂控制软件开发工具包、Arduino IDE函数库以及SerialPort串口通信软件开发工具包等,研究基于深度相机、机械臂二次开发的采摘控制系统设计,包括视觉识别定位、手爪动作控制、机械臂运动控制以及采摘控制等模块的程序设计。采摘控制系统柑橘定位试验和柑橘采摘试验的测试结果显示,在实验室环境下面对随机布置的柑橘,视觉识别定位模块的平均定位精度误差为1.22 cm,采摘过程中柑橘识别成功率达到100%,平均识别时间约为47 ms,机器人柑橘采摘成功率达到80%,平均采摘时间约为15.2 s,验证了采摘机器人平台控制系统程序的可行性,表明所开发的采摘控制系统能够正确、高效地完成整个柑橘采摘作业流程。展开更多