期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SABO优化VMD与K-means++的机器人磨削颤振识别
1
作者
吴俊烨
张浩
+1 位作者
顾波
胡孟成
《组合机床与自动化加工技术》
北大核心
2024年第6期181-184,192,共5页
机器人由于低刚度特性导致加工中极易产生颤振,针对颤振特征频率提取与颤振识别问题,提出基于减法平均优化算法(SABO)对变分模态分解(VMD)中关键参数进行优化,筛选颤振敏感IMF分量并重组;根据颤振信号的频谱特性构建基于功率谱熵差(ΔP...
机器人由于低刚度特性导致加工中极易产生颤振,针对颤振特征频率提取与颤振识别问题,提出基于减法平均优化算法(SABO)对变分模态分解(VMD)中关键参数进行优化,筛选颤振敏感IMF分量并重组;根据颤振信号的频谱特性构建基于功率谱熵差(ΔPSE)的颤振识别指标,采用K-means++算法对不同颤振类型进行辨识。实验结构表明,所提出的SABO-VMD-K-means++方法可以准确识别机器人磨削加工颤振类型,为机器人磨削颤振监测提供一定的指导。
展开更多
关键词
机器人磨削颤振
减法平均优化算法
特征提取
颤振
类型识别
下载PDF
职称材料
题名
基于SABO优化VMD与K-means++的机器人磨削颤振识别
1
作者
吴俊烨
张浩
顾波
胡孟成
机构
南京工业大学机械与动力工程学院
江苏省工业装备数字制造及控制技术重点实验室
出处
《组合机床与自动化加工技术》
北大核心
2024年第6期181-184,192,共5页
基金
江苏省科技成果转化专项资金资助项目(BA2022021)。
文摘
机器人由于低刚度特性导致加工中极易产生颤振,针对颤振特征频率提取与颤振识别问题,提出基于减法平均优化算法(SABO)对变分模态分解(VMD)中关键参数进行优化,筛选颤振敏感IMF分量并重组;根据颤振信号的频谱特性构建基于功率谱熵差(ΔPSE)的颤振识别指标,采用K-means++算法对不同颤振类型进行辨识。实验结构表明,所提出的SABO-VMD-K-means++方法可以准确识别机器人磨削加工颤振类型,为机器人磨削颤振监测提供一定的指导。
关键词
机器人磨削颤振
减法平均优化算法
特征提取
颤振
类型识别
Keywords
robot grinding chatter
subtraction-average-based optimizer
feature extraction
chatter type identification
分类号
TH16 [机械工程—机械制造及自动化]
TG58 [金属学及工艺—金属切削加工及机床]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SABO优化VMD与K-means++的机器人磨削颤振识别
吴俊烨
张浩
顾波
胡孟成
《组合机床与自动化加工技术》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部