针对传统基于图像的视觉伺服在处理摄像机退化等方面存在的不足,研究了融合三维特征与二维特征的图像视觉伺服方法。通过在经典IBVS(Image based visual servoing)控制结构基础上,将二维图像特征重构为三维特征,建立了模型化的3D特征机...针对传统基于图像的视觉伺服在处理摄像机退化等方面存在的不足,研究了融合三维特征与二维特征的图像视觉伺服方法。通过在经典IBVS(Image based visual servoing)控制结构基础上,将二维图像特征重构为三维特征,建立了模型化的3D特征机器人视觉伺服控制模型,并通过Simulink等仿真工具,分析比较了2种方法在图像空间和笛卡尔空间的空间运动特性,试验结果证实了方法的可行性和有效性。展开更多
A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy fil...A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.展开更多
文摘针对传统基于图像的视觉伺服在处理摄像机退化等方面存在的不足,研究了融合三维特征与二维特征的图像视觉伺服方法。通过在经典IBVS(Image based visual servoing)控制结构基础上,将二维图像特征重构为三维特征,建立了模型化的3D特征机器人视觉伺服控制模型,并通过Simulink等仿真工具,分析比较了2种方法在图像空间和笛卡尔空间的空间运动特性,试验结果证实了方法的可行性和有效性。
基金Supported by the National Natural Science Foundation of China(No.61221003)
文摘A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.