To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized r...To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized rules of the fuzzy control(FC)method and car dynamic model for application in SASs.The root-mean-square(RMS)acceleration of the driver’s seat and car’s pitch angle are chosen as the objective functions.The results indicate that a soft surface obviously influences a car’s ride quality,particularly when it is traveling at a high-velocity range of over 72 km/h.Using the ML method,the car’s ride quality is improved as compared to those of FC and without control under different simulation conditions.In particular,compared with those cars without control,the RMS acceleration of the driver’s seat and car’s pitch angle using the ML method are respectively reduced by 30.20% and 19.95% on the soft road and 34.36% and 21.66% on the rigid road.In addition,to optimize the ML efficiency,its learning data need to be updated under all various operating conditions of cars.展开更多
The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeuti...The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeutics, called bioelectronic medicines, are being developed to precisely regulate physiology and treat dysfunction using peripheral nerve stimulation. In this review, we first discuss new work using closed-loop bioelectronic medicine to treat upper limb paralysis. In contrast to open-loop bioelectronic medicines, closed-loop approaches trigger ‘on demand' peripheral nerve stimulation due to a change in function(e.g., during an upper limb movement or a change in cardiopulmonary state). We also outline our perspective on timing rules for closedloop bioelectronic stimulation, interface features for non-invasively stimulating peripheral nerves, and machine learning algorithms to recognize disease events for closed-loop stimulation control. Although there will be several challenges for this emerging field, we look forward to future bioelectronic medicines that can autonomously sense changes in the body, to provide closed-loop peripheral nerve stimulation and treat disease.展开更多
基金The National Key Research and Development Plan(No.2019YFB2006402)Talent Introduction Fund Project of Hubei Polytechnic University(No.17xjz01R)Key Scientific Research Project of Hubei Polytechnic University(No.22xjz02A)。
文摘To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized rules of the fuzzy control(FC)method and car dynamic model for application in SASs.The root-mean-square(RMS)acceleration of the driver’s seat and car’s pitch angle are chosen as the objective functions.The results indicate that a soft surface obviously influences a car’s ride quality,particularly when it is traveling at a high-velocity range of over 72 km/h.Using the ML method,the car’s ride quality is improved as compared to those of FC and without control under different simulation conditions.In particular,compared with those cars without control,the RMS acceleration of the driver’s seat and car’s pitch angle using the ML method are respectively reduced by 30.20% and 19.95% on the soft road and 34.36% and 21.66% on the rigid road.In addition,to optimize the ML efficiency,its learning data need to be updated under all various operating conditions of cars.
文摘The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeutics, called bioelectronic medicines, are being developed to precisely regulate physiology and treat dysfunction using peripheral nerve stimulation. In this review, we first discuss new work using closed-loop bioelectronic medicine to treat upper limb paralysis. In contrast to open-loop bioelectronic medicines, closed-loop approaches trigger ‘on demand' peripheral nerve stimulation due to a change in function(e.g., during an upper limb movement or a change in cardiopulmonary state). We also outline our perspective on timing rules for closedloop bioelectronic stimulation, interface features for non-invasively stimulating peripheral nerves, and machine learning algorithms to recognize disease events for closed-loop stimulation control. Although there will be several challenges for this emerging field, we look forward to future bioelectronic medicines that can autonomously sense changes in the body, to provide closed-loop peripheral nerve stimulation and treat disease.