期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于层次标签的机器学习流程组装 被引量:1
1
作者 陈艳 陈佳晴 陈星 《计算机科学》 CSCD 北大核心 2021年第S01期306-312,共7页
随着机器学习的兴起,算子数目飞速增长,组装算子需要搜索的解空间增大,流程组装时间指数倍增长,如何降低搜索解空间,从而降低组装时间,实现支持适应用户功能性需求的机器学习流程组装成为当前研究的热点。文中提出了一种基于层次标签、... 随着机器学习的兴起,算子数目飞速增长,组装算子需要搜索的解空间增大,流程组装时间指数倍增长,如何降低搜索解空间,从而降低组装时间,实现支持适应用户功能性需求的机器学习流程组装成为当前研究的热点。文中提出了一种基于层次标签、支持机器学习领域的流程组装方法。首先,从算子语义中提取标签,根据标签包含语义范围确定层次标签模型;其次,根据机器学习领域发现标签关系,确立领域组装模型,按照用户确定的功能性需求,确定最终领域标签模型;最后领域内算子与标签语义绑定,确定领域内算子关系模型,根据组装规则组装算子,形成满足用户功能性需求的全部算子流程。最后给出了支持该方法的实例,用以说明该方法的可行性;提出结果验证标准,用以说明结果的正确性与完整性。 展开更多
关键词 服务组装 机器学习流程 语义网 层次标签 领域特性
下载PDF
An Accurate and Extensible Machine Learning Classifier for Flow-Level Traffic Classification 被引量:2
2
作者 Gang Lu Ronghua Guo +1 位作者 Ying Zhou Jing Du 《China Communications》 SCIE CSCD 2018年第6期125-138,共14页
Machine Learning(ML) techniques have been widely applied in recent traffic classification.However, the problems of both discriminator bias and class imbalance decrease the accuracies of ML based traffic classifier. In... Machine Learning(ML) techniques have been widely applied in recent traffic classification.However, the problems of both discriminator bias and class imbalance decrease the accuracies of ML based traffic classifier. In this paper, we propose an accurate and extensible traffic classifier. Specifically, to address the discriminator bias issue, our classifier is built by making an optimal cascade of binary sub-classifiers, where each binary sub-classifier is trained independently with the discriminators used for identifying application specific traffic. Moreover, to balance a training dataset,we apply SMOTE algorithm in generating artificial training samples for minority classes.We evaluate our classifier on two datasets collected from different network border routers.Compared with the previous multi-class traffic classifiers built in one-time training process,our classifier achieves much higher F-Measure and AUC for each application. 展开更多
关键词 traffic classification class imbalance dircriminator bias encrypted traffic machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部