期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
具有机器学习能力的智能车间调度系统 被引量:7
1
作者 熊光楞 龚宁 《计算机集成制造系统-CIMS》 EI CSCD 1996年第2期34-40,共7页
本文从制造领域发展趋势的角度出发,阐述优化设计车间调度系统的必要性。
关键词 机器学习能力 车间调度 仿真系统 专家系统 制造系统
下载PDF
Method of Automatic Ontology Mapping through Machine Learning and Logic Mining 被引量:1
2
作者 王英林 《High Technology Letters》 EI CAS 2004年第4期29-34,共6页
Ontology mapping is the bottleneck of handling conflicts among heterogeneous ontologies and of implementing reconfiguration or interoperability of legacy systems. We proposed an ontology mapping method by using machin... Ontology mapping is the bottleneck of handling conflicts among heterogeneous ontologies and of implementing reconfiguration or interoperability of legacy systems. We proposed an ontology mapping method by using machine learning, type constraints and logic mining techniques. This method is able to find concept correspondences through instances and the result is optimized by using an error function; it is able to find attribute correspondence between two equivalent concepts and the mapping accuracy is enhanced by combining together instances learning, type constraints and the logic relations that are imbedded in instances; moreover, it solves the most common kind of categorization conflicts. We then proposed a merging algorithm to generate the shared ontology and proposed a reconfigurable architecture for interoperation based on multi agents. The legacy systems are encapsulated as information agents to participate in the integration system. Finally we give a simplified case study. 展开更多
关键词 机器学习能力 本体映射法 MSOM 异构系统 解调方法
下载PDF
High-throughput studies and machine learning for design of β titanium alloys with optimum properties
3
作者 Wei-min CHEN Jin-feng LING +4 位作者 Kewu BAI Kai-hong ZHENG Fu-xing YIN Li-jun ZHANG Yong DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第10期3194-3207,共14页
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi... Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications. 展开更多
关键词 high-throughput machine learning Ti-based alloys diffusion couple mechanical properties wear behavior
下载PDF
Artificial intelligence in drug design 被引量:14
4
作者 Feisheng Zhong Jing Xing +13 位作者 Xutong Li Xiaohong Liu Zunyun Fu Zhaoping Xiong Dong Lu Xiaolong Wu Jihui Zhao Xiaoqin Tan Fei Li Xiaomin Luo Zhaojun Li Kaixian Chen Mingyue Zheng Hualiang Jiang 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第10期1191-1204,共14页
Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage... Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design. 展开更多
关键词 drug design artificial intelligence deep learning QSAR ADME/T
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部