期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
空气质量指数预测方法综述
1
作者 俞婧婧 唐立力 +2 位作者 吴浩 王志舜 钟长华 《环保科技》 2023年第6期55-59,64,共6页
随着人们对美好生活需求的日益增长,空气污染成为社会发展过程中的焦点问题。由于影响空气质量的因素有很多,例如污染物浓度、地理位置、人类行为等因素,因而使空气质量预测结果的精确性无法保证。精准的空气质量指数预测可以为大气污... 随着人们对美好生活需求的日益增长,空气污染成为社会发展过程中的焦点问题。由于影响空气质量的因素有很多,例如污染物浓度、地理位置、人类行为等因素,因而使空气质量预测结果的精确性无法保证。精准的空气质量指数预测可以为大气污染防治提供参考依据,从而做出有效的决策。本文以综述的方式对近年来空气质量指数预测方法进行分析与总结,分别介绍了当前空气质量指数预测的三种主要方法:统计预测、机器学习预测以及组合预测方法,最后讨论了当前空气质量指数预测中存在的一些挑战和未来的研究方向,以期为相关研究提供参考。 展开更多
关键词 空气质量指数 统计预测方法 机器学习预测方法 组合预测方法
下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
2
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部