According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotiona...According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.展开更多
In this paper, we explore the process of emotional state transition. And the process is impacted by emotional state of interaction objects. First of all, the cognitive reasoning process and the micro-expressions recog...In this paper, we explore the process of emotional state transition. And the process is impacted by emotional state of interaction objects. First of all, the cognitive reasoning process and the micro-expressions recognition is the basis of affective computing adjustment process. Secondly, the threshold function and attenuation function are proposed to quantify the emotional changes. In the actual environment, the emotional state of the robot and external stimulus are also quantified as the transferring probability. Finally, the Gaussian cloud distribution is introduced to the Gross model to calculate the emotional transitional probabilities. The experimental results show that the model in human-computer interaction can effectively regulate the emotional states, and can significantly improve the humanoid and intelligent ability of the robot. This model is consistent with experimental and emulational significance of the psychology, and allows the robot to get rid of the mechanical emotional transfer process.展开更多
基金Project(2006AA04Z201) supported by the National High-Tech Research and Development Program of China
文摘According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
文摘In this paper, we explore the process of emotional state transition. And the process is impacted by emotional state of interaction objects. First of all, the cognitive reasoning process and the micro-expressions recognition is the basis of affective computing adjustment process. Secondly, the threshold function and attenuation function are proposed to quantify the emotional changes. In the actual environment, the emotional state of the robot and external stimulus are also quantified as the transferring probability. Finally, the Gaussian cloud distribution is introduced to the Gross model to calculate the emotional transitional probabilities. The experimental results show that the model in human-computer interaction can effectively regulate the emotional states, and can significantly improve the humanoid and intelligent ability of the robot. This model is consistent with experimental and emulational significance of the psychology, and allows the robot to get rid of the mechanical emotional transfer process.