期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
对象式软件需求模型及其机器支撑 被引量:7
1
作者 张家重 王志坚 +1 位作者 伊波 徐家福 《软件学报》 EI CSCD 北大核心 1998年第6期414-418,共5页
为了研究需求级软件自动化技术,研制对象式软件需求分析支撑系统的需要,文章提出了一个层次化对象式软件需求模型NDHORM(Nanjingdaxuehierarchicalobject-orientedrequireme... 为了研究需求级软件自动化技术,研制对象式软件需求分析支撑系统的需要,文章提出了一个层次化对象式软件需求模型NDHORM(Nanjingdaxuehierarchicalobject-orientedrequirementsmodeling),它主要包括对象关系模型、类关系模型和类字典3个组成部分.文章基于对对象式需求模型的简要讨论,详细介绍了NDHORM模型的组成、层次结构及对象精化,给出了NDHORM的构模过程,最后简要介绍了NDHORM模型的机器支撑系统. 展开更多
关键词 面向对象 机器支撑 软件需求模型 软件开发
下载PDF
基于绳系并联机器人支撑系统的SDM动导数试验可行性研究 被引量:13
2
作者 冀洋锋 林麒 +2 位作者 胡正红 彭苗娇 王宇奇 《航空学报》 EI CAS CSCD 北大核心 2017年第11期105-117,共13页
详细给出了在低速风洞中,采用绳系并联机器人(WDPR)支撑模型,用强迫振荡法进行标准动态模型(SDM)动导数试验可行性的研究。试验中将杆式六分量应变天平内置入模型中以测量模型的气动力和气动力矩,建立了适用于绳系并联机器人支撑系统的... 详细给出了在低速风洞中,采用绳系并联机器人(WDPR)支撑模型,用强迫振荡法进行标准动态模型(SDM)动导数试验可行性的研究。试验中将杆式六分量应变天平内置入模型中以测量模型的气动力和气动力矩,建立了适用于绳系并联机器人支撑系统的模型运动控制子系统和数据采集子系统。采用绳拉力作为参考信号,对气动力矩信号与位姿信号进行数据的同步处理,解决了绳系并联机器人支撑系统应用于动导数试验时所测力矩信号与位姿信号之间的相位差确定问题,给出了WDPR支撑下模型动导数的计算方法。整个试验样机置于某开口式低速直流风洞中进行了俯仰、带偏航角的俯仰以及升沉的动导数试验,通过测量和计算得到各动导数。试验结果与参考文献相比较具有合理的一致性。研究结果表明,采用绳系并联机器人支撑模型进行动导数试验是可行的,至少对于SDM是这样的结果;使用一套绳系并联机器人支撑系统,可以完成多套硬式支撑系统才能完成的动导数试验,从而提高试验效率,降低试验成本。 展开更多
关键词 绳系并联机器支撑 风洞试验 动导数 标准动态模型 内置天平
原文传递
Time series online prediction algorithm based on least squares support vector machine 被引量:8
3
作者 吴琼 刘文颖 杨以涵 《Journal of Central South University of Technology》 EI 2007年第3期442-446,共5页
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal... Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 展开更多
关键词 time series prediction machine learning support vector machine statistical learning theory
下载PDF
Support Vector Machine Ensemble Based on Genetic Algorithm
4
作者 李烨 尹汝泼 +1 位作者 蔡云泽 许晓鸣 《Journal of Donghua University(English Edition)》 EI CAS 2006年第2期74-79,共6页
Support vector machines (SVMs) have been introduced as effective methods for solving classification problems. However, due to some limitations in practical applications, their generalization performance is sometimes... Support vector machines (SVMs) have been introduced as effective methods for solving classification problems. However, due to some limitations in practical applications, their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE. Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs, hagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained. 展开更多
关键词 ensemble learning genetic algorithm support vector machine diversity.
下载PDF
LS-SVM算法的改进及其在GIS系统中的应用
5
作者 倪澎涛 王勇 《电脑知识与技术(过刊)》 2007年第14期486-487,共2页
本文首先研究了面向服务的体系结构及其在地理信息系统中的应用.而后在参考已有的地理信息系统的SOA架构的基础上,提出了将改进的最小二乘支撑向量回归机应用到该信息系统的统计分析服务器中,给统计分析服务器的设计提供了一种新的思路.
关键词 面向服务的体系结构(SOA) 最小二乘支撑向量回归机器(LS-SVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部