For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivi...For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).展开更多
基金the National Nature Science Foundation of China (Grant No. 51175425)the Aviation Science Foundation (Grant No. 2011ZA53015)+1 种基金the Aerospace Science and Technology Innovative Foundation (Grant No. 2011200093)the Nature Science Basic Research Fund of Shaanxi Province (Grant No. 2012JQ1015)
文摘For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).