Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich a...Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.展开更多
In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both no...In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both normal and C_(60) infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane.Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C_(60) NPs.The resistance and ultimate strength of the C_(60) infiltrated RBC membrane significantly decrease.We also explain the mechanism of how C_(60) NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C_(60) infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer.The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed.Nanotoxicity of C_(60) NPs may be significant for some biological cells.展开更多
基金supported by the National Natural Fundamental Research Program of China(Grant No.2012CB922103)the National Science Foundation of China(Grant Nos.11375067,11275074,11374116,11204096 and 11405061)the Fundamental Research Funds for the Central Universities HUST(Grant No.2014QN193)
文摘Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.
基金supported by the National Natural Science Foundation of China (Grant Nos.10902128,11072271,10972239,51172291)Fundamental Research Funds for the Central Universities,New Century Excellent Talents in University and Research Funds for the Doctoral Program of Higher Education
文摘In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both normal and C_(60) infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane.Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C_(60) NPs.The resistance and ultimate strength of the C_(60) infiltrated RBC membrane significantly decrease.We also explain the mechanism of how C_(60) NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C_(60) infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer.The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed.Nanotoxicity of C_(60) NPs may be significant for some biological cells.