An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalan...An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.展开更多
The paper study position positive solution method based on 6-TPS parallel mechanism, and establish general kinematics model of 6-TPS parallel mechanism, gives the numerical method of positive solution based on a kind ...The paper study position positive solution method based on 6-TPS parallel mechanism, and establish general kinematics model of 6-TPS parallel mechanism, gives the numerical method of positive solution based on a kind of position, deduced the forward position solution iteration format, and use MATLAB for the 6-TPS parallel mechanism kinematics to simulation, results show that solving program has stability, fast. effective.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50635010) and the National High Technology Research and Development Program of China ( No. 2007AA04Z422 ).
文摘An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.
文摘The paper study position positive solution method based on 6-TPS parallel mechanism, and establish general kinematics model of 6-TPS parallel mechanism, gives the numerical method of positive solution based on a kind of position, deduced the forward position solution iteration format, and use MATLAB for the 6-TPS parallel mechanism kinematics to simulation, results show that solving program has stability, fast. effective.