Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to con...Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金Innovation Fund of Harbin,China (No.2006RFQXG036)
文摘Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.