This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,w...This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.展开更多
This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed comm...This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed communication infrastructure and an event-driven situation evaluation agent, the robot can initiate action adaptive to the dynamical changes in the environment through reorganize its internal architecture. Adaptiveness and feasibility of the proposed architecture is validated through navi- gation experiments on the robot in a variety of natural outdoor environments.展开更多
The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-sta...The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.展开更多
In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the e...In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.展开更多
In order to prolong the residence time of the flow retaining in the supersonic flow, wall cavity has been widely applied in the scramjet combustor, and this affects the aerodynamic surface and imposes additional drag ...In order to prolong the residence time of the flow retaining in the supersonic flow, wall cavity has been widely applied in the scramjet combustor, and this affects the aerodynamic surface and imposes additional drag force on the hypersonic propulsion system. The two-dimensional coupled implicit Reynolds Averaged Navier-Stokes (RANS) equations and the RNG k?ε turbulent model were employed to investigate the flow fields of cavities with different geometric configurations, namely the classical rectangular, triangular and semi-circular, and the cavities with the fixed depth and length-to-depth ratio. At the same time, the drag force performances of the cavities were estimated and compared. The obtained results show that the numerical results are in very good agreement with the experimental data, and the different scales of grid make only a slight difference from the numerical results. The intensity of the trailing shock wave is much stronger than that of the leading one, and the area around the trailing edge of the cavities plays an important role in the chemical reaction in the scramjet combustor. With the fixed depth and length-to-depth ratio, the triangular cavity can strengthen the turbulent combustion in the scramjet combustor further, but impose the most additional drag force on the scramjet engine. The classical rectangular one can impose the least additional drag force on the engine, but the function of strengthening the combustion is the weakest. The influence of the semi-circular one is the moderate, but the machining process is more complex than the other two configurations.展开更多
基金Project(2016YFB1200505-016)supported by the National Key Research and Development Program of ChinaProject(51675537)supported by the National Natural Science Foundation of ChinaProject(2018zzts161)supported by the Independent Exploration and Innovation Project of Central South University,China。
文摘This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.
文摘This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed communication infrastructure and an event-driven situation evaluation agent, the robot can initiate action adaptive to the dynamical changes in the environment through reorganize its internal architecture. Adaptiveness and feasibility of the proposed architecture is validated through navi- gation experiments on the robot in a variety of natural outdoor environments.
文摘The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.
文摘In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.
基金supported by the National Natural Science Foundation of China (Grant No. 90816027)the Excellent Graduate Student Innovative Project of the National University of Defense Technology (Grant No. B070101)+1 种基金the Hunan Provincial Foundation for Postgraduate (Grant No. 3206)the Chinese Scholarship Council (CSC) for their financial support (Grant No. 2009611036)
文摘In order to prolong the residence time of the flow retaining in the supersonic flow, wall cavity has been widely applied in the scramjet combustor, and this affects the aerodynamic surface and imposes additional drag force on the hypersonic propulsion system. The two-dimensional coupled implicit Reynolds Averaged Navier-Stokes (RANS) equations and the RNG k?ε turbulent model were employed to investigate the flow fields of cavities with different geometric configurations, namely the classical rectangular, triangular and semi-circular, and the cavities with the fixed depth and length-to-depth ratio. At the same time, the drag force performances of the cavities were estimated and compared. The obtained results show that the numerical results are in very good agreement with the experimental data, and the different scales of grid make only a slight difference from the numerical results. The intensity of the trailing shock wave is much stronger than that of the leading one, and the area around the trailing edge of the cavities plays an important role in the chemical reaction in the scramjet combustor. With the fixed depth and length-to-depth ratio, the triangular cavity can strengthen the turbulent combustion in the scramjet combustor further, but impose the most additional drag force on the scramjet engine. The classical rectangular one can impose the least additional drag force on the engine, but the function of strengthening the combustion is the weakest. The influence of the semi-circular one is the moderate, but the machining process is more complex than the other two configurations.