期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种基于词频统计的组织机构名识别方法 被引量:15
1
作者 胡万亭 杨燕 +2 位作者 尹红风 贾真 刘利 《计算机应用研究》 CSCD 北大核心 2013年第7期2014-2016,共3页
命名实体识别是自然语言处理必不可少的重要部分,其中组织机构名识别占了很大的比例。提出了基于词频统计的组织机构名识别方法。训练数据主要通过百度百科词条整理得到。训练时,利用百度百科词条名在词条文本中的频数统计进行机构构成... 命名实体识别是自然语言处理必不可少的重要部分,其中组织机构名识别占了很大的比例。提出了基于词频统计的组织机构名识别方法。训练数据主要通过百度百科词条整理得到。训练时,利用百度百科词条名在词条文本中的频数统计进行机构构成词的词频统计。在此基础上,构建了数学模型,实现了组织机构名识别算法。该识别算法集成到了中文分词中,取得了较好的识别结果,可以满足一定的实际应用需求。 展开更多
关键词 统计 机构名构成 组织机构名识别
下载PDF
一种基于改进ELMO模型的组织机构名识别方法
2
作者 胡万亭 郭建英 张继永 《计算机技术与发展》 2020年第11期25-29,共5页
组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务。近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间。针对... 组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务。近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间。针对这一问题,改进ELMO(embedding from language models)预训练模型,结合双向LSTM神经网络模型和条件随机场模型,去识别组织机构名。对于ELMO的改进,主要通过筛选高频机构词,然后将高频机构词加入中文字典,通过ELMO模型训练生成机构词向量和普通字向量。字向量不用考虑未登录词的问题,机构词向量引入了先验知识,结合起来可以使得生成的字词向量能够更好地表征组织机构名。实验结果表明,预训练模型的数据集相对较小时,该方法比字向量嵌入的方法有更好的效果,F1值提高了1.3%。 展开更多
关键词 ELMO模型 LSTM模型 机构词 条件随机场 组织机构名识别
下载PDF
Grammar Model Based on Lexical Substring Extraction for RNA Secondary Structure Prediction
3
作者 唐四薪 谭晓兰 周勇 《Agricultural Science & Technology》 CAS 2012年第4期704-707,745,共5页
[Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm su... [Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm suitable for the lexicalized stochastic grammar model was proposed. The word grid mode was used to extract and divide RNA sequence to acquire lexical substring, and the cloud classifier was used to search the maximum probability of each lemma which was marked as a certain sec- ondary structure type. Then, the lemma information was introduced into the training stochastic grammar process as prior information, realizing the prediction on the sec- ondary structure of RNA, and the method was tested by experiment. [Result] The experimental results showed that the prediction accuracy and searching speed of stochastic grammar cloud model were significantly improved from the prediction with simple stochastic grammar. [Conclusion] This study laid the foundation for the wide application of stochastic grammar model for RNA secondary structure prediction. 展开更多
关键词 RNA secondary structure Stochastic grammar Lexicalize Structure prediction
下载PDF
Understanding China Through Keywords
4
《Beijing Review》 2016年第23期44-44,共1页
Learning keywords is one of the best ways to keep abreast of the latest developments in a country.The China Academy of Translation,a research institute affiliated with the China International Publishing Group,the coun... Learning keywords is one of the best ways to keep abreast of the latest developments in a country.The China Academy of Translation,a research institute affiliated with the China International Publishing Group,the country’s leading international publisher,regularly analyzes prevailing Chinese terms in various 展开更多
关键词 affiliated publisher regularly prevailing institute technological acceptance expand Nuclear publicly
原文传递
Understanding China Through Keywords
5
《Beijing Review》 2016年第25期44-44,共1页
Learning keywords is one of the best ways to keep abreast of the latest developments in a country.The China Academy of Translation,a research institute affiliated with the China International Publishing Group,the coun... Learning keywords is one of the best ways to keep abreast of the latest developments in a country.The China Academy of Translation,a research institute affiliated with the China International Publishing Group,the country’s leading international publisher,regularly analyzes prevailing Chinese terms in various sectors and translates them into a number of foreign languages ranging from English to Arabic. 展开更多
关键词 affiliated publisher regularly prevailing institute official branch executive judicial leadership
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部