The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip...The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.展开更多
One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is ...One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is studied in this paper.First,the mobility of the 4UPS-UPU parallel mechanism is analyzed based on the reciprocal screw theory,and the motion and constraint screw systems of the parallel mechanism are obtained.Then the inverse kinematics is derived by the closed-form kinematics chain.The boundary search method in the polar coordinate system is presented to analyze the constant-orientation workspace of the parallel mechanism.Finally,the influence factors relevant to the workspace,such as the structural parameters and kinematics parameters are analyzed in detail.The relationship between the workspace volume and different parameters are obtained.The conclusions can be used for parameters optimization and path planning of the parallel mechanism.展开更多
基金Supported by the National Natural Science Foundation of China (50375071)the Jiangsu Province Key Lab on Digital Manufacture Project (HGDML-0604)~~
文摘The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.
基金Supported by the National High Technology Research and Development Programme of China(No.SS2012AA041604)
文摘One of the key issues for parallel mechanism is the kinematic characteristics,especially the workspace which varies with configuration parameters.A kind of 4UPS-UPU parallel mechanism is designed and its workspace is studied in this paper.First,the mobility of the 4UPS-UPU parallel mechanism is analyzed based on the reciprocal screw theory,and the motion and constraint screw systems of the parallel mechanism are obtained.Then the inverse kinematics is derived by the closed-form kinematics chain.The boundary search method in the polar coordinate system is presented to analyze the constant-orientation workspace of the parallel mechanism.Finally,the influence factors relevant to the workspace,such as the structural parameters and kinematics parameters are analyzed in detail.The relationship between the workspace volume and different parameters are obtained.The conclusions can be used for parameters optimization and path planning of the parallel mechanism.