A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connec...A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.展开更多
A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backsteppin...A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.展开更多
An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H...An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.展开更多
Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base locat...Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.展开更多
To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to...To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to measure the grain filling rate, 100-grain weight, water content and milk line position, and the correlation was analyzed. Results showed that when the milk line position was 90%, the grain filling of all the 8 varieties finished and 100-grain weight reached the highest value, which was 43.02 g. The grain filling time was in positive correlation with 100-grain weight. However, when the milk line position completely disappeared, the 100-grain weight was reduced by 8.66% at most. There was no significant difference during the periods of grain weight rising, but in the periods of grain weight falling, the traits of D, E, H were significantly different with the other varieties, and water loss rate of C and A showed significant difference with the other six varieties. The water content of grain was negatively correlated with milk line position. When the milk line percentage was 90% , the grain water content was less than 30% . The key factor influencing the mechanized harvest of summer corn is harvesting time, rather than the varieties. Moreover, milk-line position of 90% is the best time for harvest; if the harvest is too late, the yield will be reduced with varying degrees.展开更多
The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous me...The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous mechanical bowling machines have been built to help batsmen improve their skills during practice sessions. However, most of these existing machines are designed for spherical balls ignoring the distinguishing physical feature of a cricket ball: the raised equatorial seam, which makes it less of a sphere. The bowlers are known to often benefit from this seam in their pursuit to taking the batsmen's wicket by imparting swing, spin and bounce variations along-with other bowling variables. This lack of the seam consideration creates a void between human and mechanical bowling. In this work, we present design and development of an automatic bowling machine termed as ROBOWLER to make mechanical bowling more realistic. This machine ensures ball seam position as well as fulfills other constraints. Ball pitching and seam position accuracy results underscore the suitability of this design to enhance the capabilities of mechanical bowling.展开更多
In order to monitor deformation of high temperature components for a long time,a sensing device integrating a bridge-shaped mechanical displacement amplifier has been designed.This sensing device has higher resolution...In order to monitor deformation of high temperature components for a long time,a sensing device integrating a bridge-shaped mechanical displacement amplifier has been designed.This sensing device has higher resolution and accuracy than conventional extensometers.However,the relation between the magnification ratio and the structure size of the displacement amplifier is a bottleneck of sensing device design.Addressing this,the magnification ratio of a mechanical displacement amplifier is analytically derived based on its geometry structure.Six prototypes of the displacement amplifier made in propathene are manufactured,and an experimental system is set up to validate the accuracy of the established magnification ratio equation.Theoretical magnification ratios and experimental magnification ratios are compared and agree well,which verifies that the proposed equation is reliable.This analytical equation provides an effective design method for bridge-shaped mechanical displacement amplifiers with an expected magnification ratio.展开更多
文摘A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.
基金supported by the National Natural Science Foundation of China(61273086)
文摘A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.
基金Project(2013CB035504)supported by the National Basic Research Program of China
文摘An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.
基金Supported by the National Science and Technology Support Program of China(No.2013BAK03B01)
文摘Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.
基金Supported by the"Corn Industry Technology System of Henan Province-Shangqiu Comprehensive Test Station"of the Special Fund for Modern Agricultural Technology System of Henan Province(Z2015-02-02)the"Research and Application of Full Mechanization and Supporting High-Yield Cultivation Technology of Summer Corn"of the Key Science and Technology Project of Shangqiu City(153026)~~
文摘To investigate the relationship of milk line position with grain weight and mechanized harvest of summer corn in Huang-Huai-Hai Region, 8 varieties (A, B, C, D, E, F, G, H) with large planting areas were selected to measure the grain filling rate, 100-grain weight, water content and milk line position, and the correlation was analyzed. Results showed that when the milk line position was 90%, the grain filling of all the 8 varieties finished and 100-grain weight reached the highest value, which was 43.02 g. The grain filling time was in positive correlation with 100-grain weight. However, when the milk line position completely disappeared, the 100-grain weight was reduced by 8.66% at most. There was no significant difference during the periods of grain weight rising, but in the periods of grain weight falling, the traits of D, E, H were significantly different with the other varieties, and water loss rate of C and A showed significant difference with the other six varieties. The water content of grain was negatively correlated with milk line position. When the milk line percentage was 90% , the grain water content was less than 30% . The key factor influencing the mechanized harvest of summer corn is harvesting time, rather than the varieties. Moreover, milk-line position of 90% is the best time for harvest; if the harvest is too late, the yield will be reduced with varying degrees.
文摘The art of cricket bowling is complex and arduous owing to the run-up and ball release time energy requirement to achieve speed and variations. Therefore, human bowlers cannot bowl for extended periods and numerous mechanical bowling machines have been built to help batsmen improve their skills during practice sessions. However, most of these existing machines are designed for spherical balls ignoring the distinguishing physical feature of a cricket ball: the raised equatorial seam, which makes it less of a sphere. The bowlers are known to often benefit from this seam in their pursuit to taking the batsmen's wicket by imparting swing, spin and bounce variations along-with other bowling variables. This lack of the seam consideration creates a void between human and mechanical bowling. In this work, we present design and development of an automatic bowling machine termed as ROBOWLER to make mechanical bowling more realistic. This machine ensures ball seam position as well as fulfills other constraints. Ball pitching and seam position accuracy results underscore the suitability of this design to enhance the capabilities of mechanical bowling.
基金supported by the 111 Project of China(No.B13020)the Shanghai Pujiang Program(No.15PJD010)
文摘In order to monitor deformation of high temperature components for a long time,a sensing device integrating a bridge-shaped mechanical displacement amplifier has been designed.This sensing device has higher resolution and accuracy than conventional extensometers.However,the relation between the magnification ratio and the structure size of the displacement amplifier is a bottleneck of sensing device design.Addressing this,the magnification ratio of a mechanical displacement amplifier is analytically derived based on its geometry structure.Six prototypes of the displacement amplifier made in propathene are manufactured,and an experimental system is set up to validate the accuracy of the established magnification ratio equation.Theoretical magnification ratios and experimental magnification ratios are compared and agree well,which verifies that the proposed equation is reliable.This analytical equation provides an effective design method for bridge-shaped mechanical displacement amplifiers with an expected magnification ratio.