The problem of bimaterial body boundary, especially, microcosmic and macroscopic boundary behavior of bimetallic boundary, ceramic and metal, is paid close attention by many scholars in electronic device and communica...The problem of bimaterial body boundary, especially, microcosmic and macroscopic boundary behavior of bimetallic boundary, ceramic and metal, is paid close attention by many scholars in electronic device and communication, material science, aeronautical and astronautical engineering and et al. Modern photoelectric technology, such as laser technique, conveniently is used to measure geometrical stress field of bimaterial body, quantitatively analyse boundary mechanical behavior with crack-tip and composition of boundary matter element. One has put forward mechanical model, which is used to analyze joint energy, atom transition of matter of medium layer, diffusion and solid solution, by means of energy theory of quasi- continuous body. This paper recommended the theory, technology, and gives the results.展开更多
The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties o...The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.展开更多
基金supported by National Natural Science Foundation of Shandong, China! Z94A0102
文摘The problem of bimaterial body boundary, especially, microcosmic and macroscopic boundary behavior of bimetallic boundary, ceramic and metal, is paid close attention by many scholars in electronic device and communication, material science, aeronautical and astronautical engineering and et al. Modern photoelectric technology, such as laser technique, conveniently is used to measure geometrical stress field of bimaterial body, quantitatively analyse boundary mechanical behavior with crack-tip and composition of boundary matter element. One has put forward mechanical model, which is used to analyze joint energy, atom transition of matter of medium layer, diffusion and solid solution, by means of energy theory of quasi- continuous body. This paper recommended the theory, technology, and gives the results.
基金the National Key R&D Program of China(2018YFA0703400)the Xinghai Science Funds for Distinguished Young Scholars+1 种基金Thousand Youth Talents at Dalian University of Technology,the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,Liaoning BaiQianWan Talents ProgramDalian National Laboratory for Clean Energy(DNL),DNL Cooperation Fund,Chinese Academy of Sciences(DNL180402)。
文摘The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.