Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
Accurate and real-time classification of network traffic is significant to network operation and management such as QoS differentiation, traffic shaping and security surveillance. However, with many newly emerged P2P ...Accurate and real-time classification of network traffic is significant to network operation and management such as QoS differentiation, traffic shaping and security surveillance. However, with many newly emerged P2P applications using dynamic port numbers, masquerading techniques, and payload encryption to avoid detection, traditional classification approaches turn to be ineffective. In this paper, we present a layered hybrid system to classify current Internet traffic, motivated by variety of network activities and their requirements of traffic classification. The proposed method could achieve fast and accurate traffic classification with low overheads and robustness to accommodate both known and unknown/encrypted applications. Furthermore, it is feasible to be used in the context of real-time traffic classification. Our experimental results show the distinct advantages of the proposed classifi- cation system, compared with the one-step Machine Learning (ML) approach.展开更多
The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fa...The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.展开更多
A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rp...A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.展开更多
It is of significance to research failure mechanism of debris landslides that are widespread in the Three Gorges Reservoir Area. Based on the statistical analysis of the developmental law and failure mode of debris la...It is of significance to research failure mechanism of debris landslides that are widespread in the Three Gorges Reservoir Area. Based on the statistical analysis of the developmental law and failure mode of debris landslides in the Three Gorges Reservoir, the mode of progressive failure is found. The mechanical model for progressive failure of debris landslides with two slip bands is also established by applying slice method. According to the results of the downslide force between adjacent slices, if the downslide force of lower slice is larger than zero, the slice fails along the major sliding surface, otherwise it is stable. In result, the failure range is obtained. The stress function can be determined through dimensional analysis of failure slice. According to static boundary conditions of the slice, stress state of any point in the slice can be obtained. Then stress state of any point in the secondary slip band can also be established. The failure of the secondary slip band is judged on the basis of Mohr-Coulomb failure criterion. Therefore, a mechanical method is proposed to analyze the progressive failure of debris landslide with two slip bands.展开更多
The study of generalized Jeffreys and generalized Oldroyd-B fluids with fractional derivatives has made rapid progress as an example of applications of fractional calculus in theology. However, their thermodynamic com...The study of generalized Jeffreys and generalized Oldroyd-B fluids with fractional derivatives has made rapid progress as an example of applications of fractional calculus in theology. However, their thermodynamic compatibility and mechanical ana- logue have not yet been properly considered. In the present study, by discussing both these issues, we find that the two orders of fractional derivatives in the constitutive equation of the generalized Jeffreys fluid must be the same in order to ensure that the equation is physically correct. Based on this generalized Jeffreys fluid, a thermodynamically compatible generalized Oldryd-B fluid is also proposed by the convected coordinates approach.展开更多
Objective: Considering the difficulty in classifying some cases with eye trauma by Birmingham Eye Trauma Terminology (BETT) in our epidemiological study, we introduce a new classification for epidemiological study ...Objective: Considering the difficulty in classifying some cases with eye trauma by Birmingham Eye Trauma Terminology (BETT) in our epidemiological study, we introduce a new classification for epidemiological study of mechanical eye injuries based on BETT. Methods: A retrospective investigation was carried out in 31 hospitals from January 2005 to December 2010. All medical records of inpatients with eye injuries were reviewed. A total of l0 718 patients (11 227 eyes) were diagnosed as mechanical eye injuries. All mechanical eye injuries were tried to be classified using BETT. While some eye injuries were difficult to categorize. We recorded the injury type and case number. A new classification based on BETT was also used for the same project. Results: Of 10 718 patients (11 227 eyes) with me- chanical eye injuries, the following cases cannot be classi- fied by BETT: 1 488 patients (1 559 eyes) with merely orbitalor ocular adnexa injury, 1 961 (2 054) globe injuries associ- ated with orbital or ocular adnexa injury, 271 (284) ocular surface foreign body (OSFB) or ocular wall foreign body (OWFB), 77 (89) contusion, 9 (11) lamellar laceration asso- ciated with OSFB or OWFB, 29 (30) rupture associated with OSFB, OWFB or intraocular foreign body and 60 (62) lace- ration associated with OSFB or OWFB. While according to our new classification, all eye injuries can be categorized without any difficulty. Conclusion: Difficulty in classifying some eye injuries in epidemiological study by BETT brings some trouble to our study, which can be solved by our new eye injury clas- sification to some extent. It is hoped that other ophthal- mologists present better ones to make the classification more perfect.展开更多
A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations ...A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations indicate that the principal deformation mechanism is a combination of grain boundary sliding, grain rotation and dislocation movement. The results of uniaxial tensile tests reveal the presence of a reverse Hall-Petch relation between strength and nominal grain size, rather than the conventional Hall-Petch relationship in the present range of nominal grain size(7.9–52.7 nm). An increase of flow stress may possibly attribute to the lower total proportion of grain boundary sliding and grain rotation in the deformation of samples with larger grain size. The Young's modulus shows a linear relation with the reciprocal of nominal grain size, which depends largely on the volume fraction of grain boundaries and thus decreasing grain size leads to relatively lower Young's modulus. MD simulations on samples with ligament diameter ranging from 4.07 to 8.10 nm are also carried out and results show that the increasing ligament diameter resulted in decreased flow stress and increased Young's modulus.展开更多
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
基金Supported in part by the National 863 Project of China (No.2006AA01Z232)Zhejiang Natural Science Founda-tion (No.Y1080935)Research Innovation Program Project for Graduate Students in Jiangsu Province ( No.CX07B_110zF)
文摘Accurate and real-time classification of network traffic is significant to network operation and management such as QoS differentiation, traffic shaping and security surveillance. However, with many newly emerged P2P applications using dynamic port numbers, masquerading techniques, and payload encryption to avoid detection, traditional classification approaches turn to be ineffective. In this paper, we present a layered hybrid system to classify current Internet traffic, motivated by variety of network activities and their requirements of traffic classification. The proposed method could achieve fast and accurate traffic classification with low overheads and robustness to accommodate both known and unknown/encrypted applications. Furthermore, it is feasible to be used in the context of real-time traffic classification. Our experimental results show the distinct advantages of the proposed classifi- cation system, compared with the one-step Machine Learning (ML) approach.
基金Projects BK2005018 supported by the Natural Science Foundation of Jiangsu Province CX07B-061z by the Graduate Research and Innovation Plan of Jiangsu Province
文摘The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.
文摘A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.
基金financially by National Natural Science Foundation Project "Shore Landslide and Risk Prediction of Secondary Surge Hazard in the Three Gorges Reservoir"(Grant No. 40872176)
文摘It is of significance to research failure mechanism of debris landslides that are widespread in the Three Gorges Reservoir Area. Based on the statistical analysis of the developmental law and failure mode of debris landslides in the Three Gorges Reservoir, the mode of progressive failure is found. The mechanical model for progressive failure of debris landslides with two slip bands is also established by applying slice method. According to the results of the downslide force between adjacent slices, if the downslide force of lower slice is larger than zero, the slice fails along the major sliding surface, otherwise it is stable. In result, the failure range is obtained. The stress function can be determined through dimensional analysis of failure slice. According to static boundary conditions of the slice, stress state of any point in the slice can be obtained. Then stress state of any point in the secondary slip band can also be established. The failure of the secondary slip band is judged on the basis of Mohr-Coulomb failure criterion. Therefore, a mechanical method is proposed to analyze the progressive failure of debris landslide with two slip bands.
基金supported by the National Natural Science Foundation of China(Grant No. 10972117)
文摘The study of generalized Jeffreys and generalized Oldroyd-B fluids with fractional derivatives has made rapid progress as an example of applications of fractional calculus in theology. However, their thermodynamic compatibility and mechanical ana- logue have not yet been properly considered. In the present study, by discussing both these issues, we find that the two orders of fractional derivatives in the constitutive equation of the generalized Jeffreys fluid must be the same in order to ensure that the equation is physically correct. Based on this generalized Jeffreys fluid, a thermodynamically compatible generalized Oldryd-B fluid is also proposed by the convected coordinates approach.
文摘Objective: Considering the difficulty in classifying some cases with eye trauma by Birmingham Eye Trauma Terminology (BETT) in our epidemiological study, we introduce a new classification for epidemiological study of mechanical eye injuries based on BETT. Methods: A retrospective investigation was carried out in 31 hospitals from January 2005 to December 2010. All medical records of inpatients with eye injuries were reviewed. A total of l0 718 patients (11 227 eyes) were diagnosed as mechanical eye injuries. All mechanical eye injuries were tried to be classified using BETT. While some eye injuries were difficult to categorize. We recorded the injury type and case number. A new classification based on BETT was also used for the same project. Results: Of 10 718 patients (11 227 eyes) with me- chanical eye injuries, the following cases cannot be classi- fied by BETT: 1 488 patients (1 559 eyes) with merely orbitalor ocular adnexa injury, 1 961 (2 054) globe injuries associ- ated with orbital or ocular adnexa injury, 271 (284) ocular surface foreign body (OSFB) or ocular wall foreign body (OWFB), 77 (89) contusion, 9 (11) lamellar laceration asso- ciated with OSFB or OWFB, 29 (30) rupture associated with OSFB, OWFB or intraocular foreign body and 60 (62) lace- ration associated with OSFB or OWFB. While according to our new classification, all eye injuries can be categorized without any difficulty. Conclusion: Difficulty in classifying some eye injuries in epidemiological study by BETT brings some trouble to our study, which can be solved by our new eye injury clas- sification to some extent. It is hoped that other ophthal- mologists present better ones to make the classification more perfect.
基金supported by the National Natural Science Foundation of China(Grant Nos.11102140&51575404)
文摘A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations indicate that the principal deformation mechanism is a combination of grain boundary sliding, grain rotation and dislocation movement. The results of uniaxial tensile tests reveal the presence of a reverse Hall-Petch relation between strength and nominal grain size, rather than the conventional Hall-Petch relationship in the present range of nominal grain size(7.9–52.7 nm). An increase of flow stress may possibly attribute to the lower total proportion of grain boundary sliding and grain rotation in the deformation of samples with larger grain size. The Young's modulus shows a linear relation with the reciprocal of nominal grain size, which depends largely on the volume fraction of grain boundaries and thus decreasing grain size leads to relatively lower Young's modulus. MD simulations on samples with ligament diameter ranging from 4.07 to 8.10 nm are also carried out and results show that the increasing ligament diameter resulted in decreased flow stress and increased Young's modulus.