Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results in...Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.展开更多
In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fract...In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.展开更多
Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In ...Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.展开更多
基金Project(20080430221) supported by China Postdoctoral Science Foundation Project(2008ZF52058) supported by the Aeronautical Science Foundation of ChinaProject(2009A610026) supported by the Natural Science Foundation of Ningbo City,China
文摘Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.
基金supported by Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant XDB18010401135 Program of the Institute of Geochemistry, Chinese Academy of Sciences
文摘In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.
基金supported by the National Natural Science Foundation of China(Grant Nos.50925104,11132006,51231005 and 51321003)the National Basic Research Program of China("973"Program)(Grant Nos.2010CB631003 and 2012CB619402)+1 种基金the support from the"111"Project of China(Grant No.B06025)JL also acknowledges the support by US National Science Foundation(Grant Nos.DMR-1240933 and DMR-1120901)
文摘Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.