In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, plann...In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, planned overhaul, unplanned overhaul, transitional period from unplanned overhaul to normal production (referred for short as unplanned transition) and transitional period from planned overhaul to normal production (referred for short as planned transition). The article takes the analysis of relationship between different states of a certain processing operation and corresponding energy consumptions as a startup point to develop a process energy intensity formula with variables of operating rate, yielding rate and operating frequency, etc. This process energy intensity formula can be used to analyze effectively the pattern of impact exerted by different state variables on energy consumption.展开更多
A fabrication method which integrates silicon anisotropic etching micromachining with UV-LIGA technology to make complex microstmetures is presented. This proposed combined process enables the fabrication of high-aspe...A fabrication method which integrates silicon anisotropic etching micromachining with UV-LIGA technology to make complex microstmetures is presented. This proposed combined process enables the fabrication of high-aspect-ratio and three-dimensional (3D) microstructures, which cannot be fabricated by silicon bulk mieromachining or UV-LIGA alone. To demonstrate this combined method, the 100μm thick SU-8 micro gears were fabricated on the silicon convex square structure, which is 100μm × 100μm× 80μm in dimension. In the subsequent micro hot embossing process, a novel type of plastics polyethylene terephtalate glycol (PETG) was tried for use. Through optimizing process parameters, PETG shows the potential of being used as plastic replica in micro-electro-mechanical system (MEMS). This fabrication technology provides a new option for the increasing need of functionality, quality and economy of MEMS.展开更多
文摘In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, planned overhaul, unplanned overhaul, transitional period from unplanned overhaul to normal production (referred for short as unplanned transition) and transitional period from planned overhaul to normal production (referred for short as planned transition). The article takes the analysis of relationship between different states of a certain processing operation and corresponding energy consumptions as a startup point to develop a process energy intensity formula with variables of operating rate, yielding rate and operating frequency, etc. This process energy intensity formula can be used to analyze effectively the pattern of impact exerted by different state variables on energy consumption.
基金Supported by the National Natural Science Foundation of China (No. 50575132), Science and Technology Commission of Shanghai Mtmicipality (No. O5JC14061 ) and National Key Laboratory of Micro/Nano Fabrication Technology Foundation (No. 9140C7903060706)
文摘A fabrication method which integrates silicon anisotropic etching micromachining with UV-LIGA technology to make complex microstmetures is presented. This proposed combined process enables the fabrication of high-aspect-ratio and three-dimensional (3D) microstructures, which cannot be fabricated by silicon bulk mieromachining or UV-LIGA alone. To demonstrate this combined method, the 100μm thick SU-8 micro gears were fabricated on the silicon convex square structure, which is 100μm × 100μm× 80μm in dimension. In the subsequent micro hot embossing process, a novel type of plastics polyethylene terephtalate glycol (PETG) was tried for use. Through optimizing process parameters, PETG shows the potential of being used as plastic replica in micro-electro-mechanical system (MEMS). This fabrication technology provides a new option for the increasing need of functionality, quality and economy of MEMS.