In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velo...Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velocimetry(PTV)technique was employed to characterize the particle removal displacement and velocity in the interface between a transparent copper film and a porous polyvinyl alcohol(PVA)brush during the cleaning process.Several different cleaning conditions including rotation speeds,loading pressure and cleaning agent were examined and the particle removal rate was compared.Elastic and friction removal,hydrodynamic removal and mixed-type removal are the three types of particle removal.Particles with an arc trace and uniform velocity curves were removed by friction and elastic force which were related to the brush load.Particles with a random trace and fluctuant velocity curves were removed by hydrodynamic force which was determined by the brush rotation speed.The increase of particle removal rate(PRR)with brush rotation speed is a logistic function.It is easier to improve PRR by increasing the brush load or by adding surfactant than by increasing the brush rotation speed.展开更多
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
基金supported by the National Natural Science Foundation of China(Grant No.51205006)the Tribology Science Fund of State Key Laboratory of Tribology and the Program for Excellent Talents by the Beijing Ministry of Organization
文摘Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velocimetry(PTV)technique was employed to characterize the particle removal displacement and velocity in the interface between a transparent copper film and a porous polyvinyl alcohol(PVA)brush during the cleaning process.Several different cleaning conditions including rotation speeds,loading pressure and cleaning agent were examined and the particle removal rate was compared.Elastic and friction removal,hydrodynamic removal and mixed-type removal are the three types of particle removal.Particles with an arc trace and uniform velocity curves were removed by friction and elastic force which were related to the brush load.Particles with a random trace and fluctuant velocity curves were removed by hydrodynamic force which was determined by the brush rotation speed.The increase of particle removal rate(PRR)with brush rotation speed is a logistic function.It is easier to improve PRR by increasing the brush load or by adding surfactant than by increasing the brush rotation speed.