Transporting hatching eggs from Hungary and incubating them abroad revealed lower hatchability compared to when the eggs were incubated in Hungary. Following transport, there were higher embryo losses and, notably, mo...Transporting hatching eggs from Hungary and incubating them abroad revealed lower hatchability compared to when the eggs were incubated in Hungary. Following transport, there were higher embryo losses and, notably, more malformed embryos. The aim of these initial trials was to determine if a testing device (crazy fit massage machine (CFM machine)) was able to replicate and model the mechanical impacts experienced during transport and reproduce the reduction in hatchability and increase the level of malformed embryos as observed in commercial practice. Tinytag~ high sensitivity shock and vibration loggers were used to monitor the impacts under field and trial conditions. Applying single 10 min treatments on the CFM machine, which used the same frequency (10-30 Hz) as the eggs experience under field conditions, induced the negative effect of transport, and lower hatching results were experienced. Three trials were conducted. Treated eggs in Trials 1 and 2 received automatically and periodical changing vibration in a range between 10-30 Hz for 10 min while in Trial 3 two different levels of impact were applied at 20 Hz and 30 Hz, respectively. Hatchability decreased due to the treatment significatly only in Trial 3. Significant differences were also detected in early dead levels in Trials 2 and 3 and the occurrences of malformation in Trials 1 and 3. All these results are in accordance with the field experience. Thus, the trials which examined the equipment were able to produce mechanical impacts that were repeatable in order to set up statistically reliable trials on hatching eggs.展开更多
文摘Transporting hatching eggs from Hungary and incubating them abroad revealed lower hatchability compared to when the eggs were incubated in Hungary. Following transport, there were higher embryo losses and, notably, more malformed embryos. The aim of these initial trials was to determine if a testing device (crazy fit massage machine (CFM machine)) was able to replicate and model the mechanical impacts experienced during transport and reproduce the reduction in hatchability and increase the level of malformed embryos as observed in commercial practice. Tinytag~ high sensitivity shock and vibration loggers were used to monitor the impacts under field and trial conditions. Applying single 10 min treatments on the CFM machine, which used the same frequency (10-30 Hz) as the eggs experience under field conditions, induced the negative effect of transport, and lower hatching results were experienced. Three trials were conducted. Treated eggs in Trials 1 and 2 received automatically and periodical changing vibration in a range between 10-30 Hz for 10 min while in Trial 3 two different levels of impact were applied at 20 Hz and 30 Hz, respectively. Hatchability decreased due to the treatment significatly only in Trial 3. Significant differences were also detected in early dead levels in Trials 2 and 3 and the occurrences of malformation in Trials 1 and 3. All these results are in accordance with the field experience. Thus, the trials which examined the equipment were able to produce mechanical impacts that were repeatable in order to set up statistically reliable trials on hatching eggs.