This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were...This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).展开更多
A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for...A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.展开更多
Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was...Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.展开更多
The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters wit...The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters with considerations of the multiple response (the wrinkle, crack and thinning variation). The deep-drawing parame- ters, such as the blank holding force (Fhh), the radii of punch and die (R1.R2), the coefficients of friction (μ1,μ2,μ3) are considered. An orthogonal array is used for the experimental design. The multiple response values are ob- tained making use of finite element analysis (FEA). Optimal process parameters are determined by the grey rela- tional grade obtained from the grey relational analysis for multi-performance characteristics (the wrinkle, crack and the thinning). The analysis of variance (ANOVA) for the grey relational grade is implemented. The results show that the quality of stamped parts can be improved effectively through the new approach. The grey relational analysis can be applied in sheet metal forming.展开更多
Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-s...Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.展开更多
Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displ...Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displacements and deformations.Then,the method of the soil division was presented,and the characteristic of single soil block was studied.The displacement of the block had two components:sliding and deformation.Moreover,a new objective function was constructed according to the deformation of the soil block.Finally,the sensitivities of the objective functions by traditional method and the new method were calculated,respectively.The result shows that the new objective function is more sensitive to mechanical parameters and the inversion result is close to that obtained by the large direct shear apparatus.So,this method can be used in slope back analysis and its effectiveness is proved.展开更多
Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Ka...Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Kawabata’s hand and silhouette evaluation methods, a software system was established. Then the mechanical properties, hand and silhouette of a fabric can be predicted quickly and accurately in terms of fiber configurations, yarn and fabric structures. The predictive result if unsatisfied can be revised by the function of “Help for designing modification”.展开更多
Relatively to non-traditional and high-energy-beam micro-manufacturing technique, the micro-cutting technology has many merits. For instance, the machining range is bigger, the cost of equipments is much lower, and th...Relatively to non-traditional and high-energy-beam micro-manufacturing technique, the micro-cutting technology has many merits. For instance, the machining range is bigger, the cost of equipments is much lower, and the productivity and machining accuracy are higher. Therefore, the micro-cutting technology will take an important effect on the machining technique of complex shape microparts. In this paper, based on selfly-developed machine tool, the precision cutting technology of complex shape microparts made of metal material was studied by analyzing the modeling method on complex shape, the means of toolpaths layout and the optimal selection for cutting parameters. On the basis of above work, a typical duralumin specimen of high precision, low surface roughness and complex shape micropart was manufactured. This result will provide favorable technical support for farther research on the micro-cutting technology.展开更多
A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a ...A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a slave module in the shape of triangular prism. There are four connection ports on each basic module. For the master module there are two holes on each connection port,and for the slave one there are two pegs on each connection. The docking process between two neighboring basic modules is analyzed with a peg-in-hole mechanical structure. A small motion's method is presented and the contact forces are derived. According to the force/moment,the pose of a motion module should be adjusted to make two neighboring modules align and finish the docking process.Finally,a simulation of 3 basic modules is shown to finish the morphing and docking process effectively. The system can finish the morphing task from the line shape to the hexagon shape.展开更多
Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In ...Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.展开更多
基金Tabriz Branch,Islamic Azad University for the financial support of this research,which is based on a research project contract
文摘This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).
基金Foundation item: The National Torch Program of China (No. 2001EB000991)
文摘A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.
基金the Hundred-Talent-Person Project of Chinese Academy of Sciences.
文摘Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.
基金The National Natural Science Foundation of China (No50475020)
文摘The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters with considerations of the multiple response (the wrinkle, crack and thinning variation). The deep-drawing parame- ters, such as the blank holding force (Fhh), the radii of punch and die (R1.R2), the coefficients of friction (μ1,μ2,μ3) are considered. An orthogonal array is used for the experimental design. The multiple response values are ob- tained making use of finite element analysis (FEA). Optimal process parameters are determined by the grey rela- tional grade obtained from the grey relational analysis for multi-performance characteristics (the wrinkle, crack and the thinning). The analysis of variance (ANOVA) for the grey relational grade is implemented. The results show that the quality of stamped parts can be improved effectively through the new approach. The grey relational analysis can be applied in sheet metal forming.
基金Projects(51005054, 50575051) supported by the National Natural Science Foundation of ChinaProject(HIT.BRETI.2010010) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(20100471025) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.
基金Projects(2013CB036004,2011CB710601)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of ChinaProject(CX2011B096)supported by Hunan Provincial Postgraduate Innovation Program,China
文摘Based on the analysis of several objective functions,a new method was proposed.Firstly,the feature of the inclination curve was analyzed.On this basis,the soil could be divided into several blocks with different displacements and deformations.Then,the method of the soil division was presented,and the characteristic of single soil block was studied.The displacement of the block had two components:sliding and deformation.Moreover,a new objective function was constructed according to the deformation of the soil block.Finally,the sensitivities of the objective functions by traditional method and the new method were calculated,respectively.The result shows that the new objective function is more sensitive to mechanical parameters and the inversion result is close to that obtained by the large direct shear apparatus.So,this method can be used in slope back analysis and its effectiveness is proved.
文摘Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Kawabata’s hand and silhouette evaluation methods, a software system was established. Then the mechanical properties, hand and silhouette of a fabric can be predicted quickly and accurately in terms of fiber configurations, yarn and fabric structures. The predictive result if unsatisfied can be revised by the function of “Help for designing modification”.
基金Sponsored by China Postdoctoral Science Foundation (Grant No2004035530)
文摘Relatively to non-traditional and high-energy-beam micro-manufacturing technique, the micro-cutting technology has many merits. For instance, the machining range is bigger, the cost of equipments is much lower, and the productivity and machining accuracy are higher. Therefore, the micro-cutting technology will take an important effect on the machining technique of complex shape microparts. In this paper, based on selfly-developed machine tool, the precision cutting technology of complex shape microparts made of metal material was studied by analyzing the modeling method on complex shape, the means of toolpaths layout and the optimal selection for cutting parameters. On the basis of above work, a typical duralumin specimen of high precision, low surface roughness and complex shape micropart was manufactured. This result will provide favorable technical support for farther research on the micro-cutting technology.
基金Supported by the National Natural Science Foundation of China(No.61175069,51075272,51475300)
文摘A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a slave module in the shape of triangular prism. There are four connection ports on each basic module. For the master module there are two holes on each connection port,and for the slave one there are two pegs on each connection. The docking process between two neighboring basic modules is analyzed with a peg-in-hole mechanical structure. A small motion's method is presented and the contact forces are derived. According to the force/moment,the pose of a motion module should be adjusted to make two neighboring modules align and finish the docking process.Finally,a simulation of 3 basic modules is shown to finish the morphing and docking process effectively. The system can finish the morphing task from the line shape to the hexagon shape.
基金supported by the National Natural Science Foundation of China(Grant Nos.50925104,11132006,51231005 and 51321003)the National Basic Research Program of China("973"Program)(Grant Nos.2010CB631003 and 2012CB619402)+1 种基金the support from the"111"Project of China(Grant No.B06025)JL also acknowledges the support by US National Science Foundation(Grant Nos.DMR-1240933 and DMR-1120901)
文摘Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.