Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained tha...Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.展开更多
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie...The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.展开更多
Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and...Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.展开更多
文摘Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.
基金Supported by the National Natural Science Foundation of China(No.51175373)New Century Educational Talents Plan of Chinese Education Ministry(No.NCET-10-0625)+1 种基金Key Technology and Development Program of Tianjin Municipal Science and Technology Commission(No.12ZCDZSY10600)Tianjin Key Laboratory of High Speed Cutting&Precision Machining(TUTE)(2013120024001167)
文摘The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.
文摘Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.