Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to f...Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to find the genuine reason leading to effective resistance response of tree to insects attacking. The release situation of the induced volatiles of the plant was analyzed by TCT-GC/MS at 24 hours after damages. The results indicated that some of the volatiles such as (Z)-3-hexenyl acetate, decanal, 3-hexenyl isovalerate, nonanal, ocimene, and 2-cyanobutane can be induced by both insects attack-ing and mechanical damage, while 2,6-dimethyl-1,3,5,7-octatetraene, 2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene, Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl phthalate were only induced by insects attacking. Such difference in volatiles was attributed to that there existed active components in oral sections of the larvae of Lymantria dispar展开更多
The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect...The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect pest. Also, the CPB has developed over the years a resistance to most of the registered chemical insecticides, including those that were effective at one time. One of the most promising alternatives to chemical insecticides consists of taking advantage of natural enemies. The use of the stinkbug predator Perillus bioculatus to control the CPB has been successful at small scale. However, this natural enemy is not abundant in the nature and its hand release at large scale is not realistic. To remedy to this problem, predators must be massively released in potato fields using a mechanical distributor. Such a machine has been successfully designed and built at the Department of Soils and Agri-Food Engineering of University Lavak In this distributor, masses of predators are placed in small containers and mixed with a carrier material. In the field, the containers are mechanically opened at different locations, based on a source-point mass release option. These locations are determined in advance following a field monitoring of the populations of CPBs. Field trials proved that the mechanical distributor is reliable and ease of use. Its efficiency in releasing insect predators is high and comparable to that obtained in previous laboratory tests.展开更多
The CPB (Colorado potato beetle) is unquestionably the major insect pest of potato crops in North America, Europe, and Asia. The use of chemical insecticides to control this insect pest started in the 1860s. To date...The CPB (Colorado potato beetle) is unquestionably the major insect pest of potato crops in North America, Europe, and Asia. The use of chemical insecticides to control this insect pest started in the 1860s. To date, no registered chemical has been capable of effectively managing this agricultural pest. Moreover, the CPB has developed over the years a resistance to most of the registered chemical insecticides. The biological control through manual release of natural enemies of the CPB has been successful at small scale. However, hand release of these predators at large scale is not realistic. The objective of this study was to investigate the effectiveness of controlling the CPB through mechanical release of predator insects under real conditions in a potato field. Obtained results indicate that the mechanical release of predator insects resulted in a better control of the CPB populations and egg masses than the manual release. The success of this mechanical release of predator insects in potato fields will be highly valuable for the biological control of insect pests in many other row crops such as strawberry, lettuce, etc..展开更多
基金This research is supported by National Natural Science Foundation of China (No.30170764) and the Postgraduate Training Fund of Graduate School of Beijing Forestry University (No.03SW004)
文摘Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to find the genuine reason leading to effective resistance response of tree to insects attacking. The release situation of the induced volatiles of the plant was analyzed by TCT-GC/MS at 24 hours after damages. The results indicated that some of the volatiles such as (Z)-3-hexenyl acetate, decanal, 3-hexenyl isovalerate, nonanal, ocimene, and 2-cyanobutane can be induced by both insects attack-ing and mechanical damage, while 2,6-dimethyl-1,3,5,7-octatetraene, 2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene, Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl phthalate were only induced by insects attacking. Such difference in volatiles was attributed to that there existed active components in oral sections of the larvae of Lymantria dispar
文摘The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect pest. Also, the CPB has developed over the years a resistance to most of the registered chemical insecticides, including those that were effective at one time. One of the most promising alternatives to chemical insecticides consists of taking advantage of natural enemies. The use of the stinkbug predator Perillus bioculatus to control the CPB has been successful at small scale. However, this natural enemy is not abundant in the nature and its hand release at large scale is not realistic. To remedy to this problem, predators must be massively released in potato fields using a mechanical distributor. Such a machine has been successfully designed and built at the Department of Soils and Agri-Food Engineering of University Lavak In this distributor, masses of predators are placed in small containers and mixed with a carrier material. In the field, the containers are mechanically opened at different locations, based on a source-point mass release option. These locations are determined in advance following a field monitoring of the populations of CPBs. Field trials proved that the mechanical distributor is reliable and ease of use. Its efficiency in releasing insect predators is high and comparable to that obtained in previous laboratory tests.
文摘The CPB (Colorado potato beetle) is unquestionably the major insect pest of potato crops in North America, Europe, and Asia. The use of chemical insecticides to control this insect pest started in the 1860s. To date, no registered chemical has been capable of effectively managing this agricultural pest. Moreover, the CPB has developed over the years a resistance to most of the registered chemical insecticides. The biological control through manual release of natural enemies of the CPB has been successful at small scale. However, hand release of these predators at large scale is not realistic. The objective of this study was to investigate the effectiveness of controlling the CPB through mechanical release of predator insects under real conditions in a potato field. Obtained results indicate that the mechanical release of predator insects resulted in a better control of the CPB populations and egg masses than the manual release. The success of this mechanical release of predator insects in potato fields will be highly valuable for the biological control of insect pests in many other row crops such as strawberry, lettuce, etc..