Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base locat...Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.展开更多
A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is ...A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is put forward for the first time. The equation of translational zero-disturbance curve is deduced using the nonholonomic constraint of the manipulator system, and its characteristics are also discussed. Second, the zero-disturbance curve of the whole operating process is divided into two segments. The first one is a translational zero-disturbance curve which passes through the target point. Another one is a common zero-disturbance curve which passes through the original point and intersects with the translational zero-disturbance curve. Finally, the common zero-disturbance curve is obtained by a hybrid programming strategy based on Gauss pseudo-spectral method (GPM) and direct shooting method (DSM). The numerical simulation results indicate that the proposed method is effective, and that the solvable space of this method almost covers the whole work space of the manipulator system.展开更多
基金Supported by the National Science and Technology Support Program of China(No.2013BAK03B01)
文摘Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.
文摘A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is put forward for the first time. The equation of translational zero-disturbance curve is deduced using the nonholonomic constraint of the manipulator system, and its characteristics are also discussed. Second, the zero-disturbance curve of the whole operating process is divided into two segments. The first one is a translational zero-disturbance curve which passes through the target point. Another one is a common zero-disturbance curve which passes through the original point and intersects with the translational zero-disturbance curve. Finally, the common zero-disturbance curve is obtained by a hybrid programming strategy based on Gauss pseudo-spectral method (GPM) and direct shooting method (DSM). The numerical simulation results indicate that the proposed method is effective, and that the solvable space of this method almost covers the whole work space of the manipulator system.