A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal...Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.展开更多
A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch i...A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.展开更多
The results of an analytical investigation of the flexural behaviour of Steel Fibre Reinforced Concrete (SFRC) beams are presented. The complete response of the SFRC beams under displacement controlled static loadin...The results of an analytical investigation of the flexural behaviour of Steel Fibre Reinforced Concrete (SFRC) beams are presented. The complete response of the SFRC beams under displacement controlled static loading was obtained using nonlinear Finite Element (FE) techniques implemented with the help of ATENA 2D soRware. Issues relating to the behaviour of SFRC which have a direct bearing on the FE modelling are discussed with relevance to the software employed for the nonlinear analysis. Constitutive models amenable to numerical analysis for steel fibrous concrete are presented. The structural response throughout the loading regime was captured in terms of the load-deflection behaviour, which in addition to the post-peak response characterized the failure mode of the test beams. The crack patterns at crack initiation and at the end of the tests were also recorded. Experimental results from the specimens of two other investigators were used as control values for this investigation. The response of the specimens of this investigation was evaluated in terms of initial tangent stiffness, peak loads and toughness. Good match was obtained between the results from this investigation and corresponding experimentally obtained values, wherever available. The influence of the fibre content is reflected in the observed trends in peak loads, deflection at peak loads and toughness, which are in broad agreement with known behavioral patterns of SFRC.展开更多
The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang min...The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.展开更多
Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete ...Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete set.Wealso simply discuss its properties and application.展开更多
Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the effic...Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the efficiency of electric series-hybrid powertrains (ESHPs) is often depicted as worse than the efficiency of mechanical-hydraulic power-split powertrains (MHPSPs). On closer inspection of these statements, however, systematic errors, such as unequal balance limits, neglected size effects and nonlinearities, non-observance of recent technical developments and standards, or erroneous application of research results regarding MHPSPs on ESHPs are often evident. For verification (and under avoidance of the systematic errors mentioned above), the losses of an ESHP of 150 kW power are for example calculated and compared with the losses of a typical MHPSP of the same power. The comparison of the losses shows that the ESHP clearly exceeds the efficiency of the comparative MHPSP in the main working range and that there is still potential for improvement.展开更多
This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity a...This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity and Reynolds equation as well. The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam and stationary plate, the pull-in instability happens.展开更多
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074040 6022506) and the Teaching and ResearchAward Program for Outstanding Young Teachers in Higher Edu-cation Institutions of China
文摘Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.
基金This project is imbursed by elite university teacher supporting plan
文摘A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.
文摘The results of an analytical investigation of the flexural behaviour of Steel Fibre Reinforced Concrete (SFRC) beams are presented. The complete response of the SFRC beams under displacement controlled static loading was obtained using nonlinear Finite Element (FE) techniques implemented with the help of ATENA 2D soRware. Issues relating to the behaviour of SFRC which have a direct bearing on the FE modelling are discussed with relevance to the software employed for the nonlinear analysis. Constitutive models amenable to numerical analysis for steel fibrous concrete are presented. The structural response throughout the loading regime was captured in terms of the load-deflection behaviour, which in addition to the post-peak response characterized the failure mode of the test beams. The crack patterns at crack initiation and at the end of the tests were also recorded. Experimental results from the specimens of two other investigators were used as control values for this investigation. The response of the specimens of this investigation was evaluated in terms of initial tangent stiffness, peak loads and toughness. Good match was obtained between the results from this investigation and corresponding experimentally obtained values, wherever available. The influence of the fibre content is reflected in the observed trends in peak loads, deflection at peak loads and toughness, which are in broad agreement with known behavioral patterns of SFRC.
文摘The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘Based on the technique of integral within an ordered product of nonlinear bosonic operators,we constructa new kind of tripartite nonlinear entangled state |α,γ〉_λ in 3-mode Fock space,which can make up a complete set.Wealso simply discuss its properties and application.
文摘Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the efficiency of electric series-hybrid powertrains (ESHPs) is often depicted as worse than the efficiency of mechanical-hydraulic power-split powertrains (MHPSPs). On closer inspection of these statements, however, systematic errors, such as unequal balance limits, neglected size effects and nonlinearities, non-observance of recent technical developments and standards, or erroneous application of research results regarding MHPSPs on ESHPs are often evident. For verification (and under avoidance of the systematic errors mentioned above), the losses of an ESHP of 150 kW power are for example calculated and compared with the losses of a typical MHPSP of the same power. The comparison of the losses shows that the ESHP clearly exceeds the efficiency of the comparative MHPSP in the main working range and that there is still potential for improvement.
文摘This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity and Reynolds equation as well. The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam and stationary plate, the pull-in instability happens.