The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On th...The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On the basis of the experi- mental data about fuel injection quantity and fuel pressure, the variation of inconsistency in fuel injection quantity of EUP and the influence factors in different operating conditions are concluded. The results show that the inconsistency is lowest in maximum torque condition, while on the start and maximum power conditions, it is higher.展开更多
Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mec...Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.展开更多
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,...The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.展开更多
文摘The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On the basis of the experi- mental data about fuel injection quantity and fuel pressure, the variation of inconsistency in fuel injection quantity of EUP and the influence factors in different operating conditions are concluded. The results show that the inconsistency is lowest in maximum torque condition, while on the start and maximum power conditions, it is higher.
文摘Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707206)
文摘The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.