A loss model for the mixed-flow pump impellers was developed by summarizing a variety of loss calculation formulas systematically.The internal flow field of the impeller was obtained by employing the iterative calcula...A loss model for the mixed-flow pump impellers was developed by summarizing a variety of loss calculation formulas systematically.The internal flow field of the impeller was obtained by employing the iterative calculation for S 1 and S 2 stream surfaces to solve the continuity and motion equations of fluid.Based on the calculation method of the flow field and the loss model,it is achieved to predict the impeller performance of the mixed-flow pump and the performance curves of a mixed-flow pump model with adjustable blades.Compared with the test data,the loss model of the mixed-flow pump based on the iterative calculation can predict the impeller performance quickly and accurately,which has a high value on the engineering applications.Based on the test verification,curves of various kinds of losses varied for the flow rate were analyzed under different blade angles.In addition,the mechanisms of various kinds of losses inside the mixed-flow pump impeller were discussed in-depth.展开更多
As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes e...As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51176088)the Open Research Foundation of State Key Laboratory of Hydroscience and Engineering of Tsinghua University(Grant No. 2009T3)
文摘A loss model for the mixed-flow pump impellers was developed by summarizing a variety of loss calculation formulas systematically.The internal flow field of the impeller was obtained by employing the iterative calculation for S 1 and S 2 stream surfaces to solve the continuity and motion equations of fluid.Based on the calculation method of the flow field and the loss model,it is achieved to predict the impeller performance of the mixed-flow pump and the performance curves of a mixed-flow pump model with adjustable blades.Compared with the test data,the loss model of the mixed-flow pump based on the iterative calculation can predict the impeller performance quickly and accurately,which has a high value on the engineering applications.Based on the test verification,curves of various kinds of losses varied for the flow rate were analyzed under different blade angles.In addition,the mechanisms of various kinds of losses inside the mixed-flow pump impeller were discussed in-depth.
基金supported by the National Key Technology R&G Program(Project No.2012BAF03B01-X)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.