In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedo...In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.展开更多
Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to aut...Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been bui...Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.展开更多
Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). Th...Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). This computer -controlled LCD-CCD image processing system may be a powerful tool for defect detection, position control and pattern recognition. It enables new possibilities in analog real-time image processing. This is of great interest in microelectronic manufacturing today and in the future.展开更多
Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The...Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.展开更多
The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to as...The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system behavior in failure condition. The work analyses the response of a redundant secondary flight control hydraulic servo-mechanism equipped with some proper equalization devices, when some of the most probable and representative failures are present. It must be noted that the redundancy layout, designed in order to assure the necessary safety level even in failure conditions, may behave improperly during normal operations, if the system architecture is unsuitable, when manufacturing defects are present. The improper behavior, generally consisting of force fighting or speed fighting caused by different offsets or asymmetries between the two sections of the system, may be usually overcome by means of a suitable equalization device. Therefore, the system behavior during and following the failure transient greatly depends on both its redundancy architecture and related equalization device. The above mentioned problems have been studied by means of an appropriate physical-mathematical model of a typical electro-hydraulic servo-mechanism prepared to the purpose, performing a certain number of simulations of representative actuations in which different types of failures are accurately modeled. In the opinion of the authors, this paper concerns a topic quite neglected but important in the technical literature. At the best of the authors' knowledge, no specific scientific work in this field is available, excepting some industrial technical reports.展开更多
A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high ...A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high load carrying ability. The current version is 1. lm long and 0.48m wide, and weights about 150kg. Each leg has four rotational joints driven by hydraulic cylinders and one pas- sive translational joint with spring. The torso carries the control system and the power system. A no- vel control algorithm is developed based on a Spring-Loaded Inverted Pendulum model and the prin- ciple of joint function separation. The robot can not only cross a 150mm high obstacle in static gait and trot at 2.5km/h and l km/h on the level-ground and 10°sloped-terrain respectively, but also au- tomatically keep balanced under lateral disturbance. In this paper, the mechanical structure and control systems are also discussed. Simulations and experiments are carried out to validate the design and algorithms.展开更多
基金Project(2003AA430200) supported by the National Hi-Tech Research and Development Program(863) of China
文摘In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.
基金Project(K5117827)supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(08KJB510021)supported by the Natural Science Research Council of Jiangsu Province,China+1 种基金Project(Q3117918)supported by Scientific Research Foundation for Young Teachers of Soochow University,ChinaProject(60910001)supported by National Natural Science Foundation of China
文摘Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
基金Supported by the National Natural Science Foundation of China(No.51575471)Collaborative Innovation Program Topics of Heavy Machinery of Yanshan University(2011 Program,No.ZX01-20140400-01)
文摘Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.
基金National Studying Abroad Foundation Management Commission of China!(No. 98822014)
文摘Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). This computer -controlled LCD-CCD image processing system may be a powerful tool for defect detection, position control and pattern recognition. It enables new possibilities in analog real-time image processing. This is of great interest in microelectronic manufacturing today and in the future.
文摘Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.
文摘The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system behavior in failure condition. The work analyses the response of a redundant secondary flight control hydraulic servo-mechanism equipped with some proper equalization devices, when some of the most probable and representative failures are present. It must be noted that the redundancy layout, designed in order to assure the necessary safety level even in failure conditions, may behave improperly during normal operations, if the system architecture is unsuitable, when manufacturing defects are present. The improper behavior, generally consisting of force fighting or speed fighting caused by different offsets or asymmetries between the two sections of the system, may be usually overcome by means of a suitable equalization device. Therefore, the system behavior during and following the failure transient greatly depends on both its redundancy architecture and related equalization device. The above mentioned problems have been studied by means of an appropriate physical-mathematical model of a typical electro-hydraulic servo-mechanism prepared to the purpose, performing a certain number of simulations of representative actuations in which different types of failures are accurately modeled. In the opinion of the authors, this paper concerns a topic quite neglected but important in the technical literature. At the best of the authors' knowledge, no specific scientific work in this field is available, excepting some industrial technical reports.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA040701)
文摘A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high load carrying ability. The current version is 1. lm long and 0.48m wide, and weights about 150kg. Each leg has four rotational joints driven by hydraulic cylinders and one pas- sive translational joint with spring. The torso carries the control system and the power system. A no- vel control algorithm is developed based on a Spring-Loaded Inverted Pendulum model and the prin- ciple of joint function separation. The robot can not only cross a 150mm high obstacle in static gait and trot at 2.5km/h and l km/h on the level-ground and 10°sloped-terrain respectively, but also au- tomatically keep balanced under lateral disturbance. In this paper, the mechanical structure and control systems are also discussed. Simulations and experiments are carried out to validate the design and algorithms.