将集成控制技术引入交流接触器的控制中,以智能功率芯片为核心,集成跨周期调制电路和功率开关管,以132 k Hz的高频工作模式,对交流接触器进行闭环控制。使用Multisim和Lab View软件,建立智能控制下的接触器闭环机电一体化仿真系统。通...将集成控制技术引入交流接触器的控制中,以智能功率芯片为核心,集成跨周期调制电路和功率开关管,以132 k Hz的高频工作模式,对交流接触器进行闭环控制。使用Multisim和Lab View软件,建立智能控制下的接触器闭环机电一体化仿真系统。通过仿真系统分析瞬态特性,合理设计控制模块的工作模式,从底层分析高频工作方式引起电子器件产生的噪声及抑制措施,达到对电磁机构动作特性的良好控制,试验验证了集成方案的可行性。展开更多
This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation ...This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.展开更多
The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model ...The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.展开更多
The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelli...The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.展开更多
文摘将集成控制技术引入交流接触器的控制中,以智能功率芯片为核心,集成跨周期调制电路和功率开关管,以132 k Hz的高频工作模式,对交流接触器进行闭环控制。使用Multisim和Lab View软件,建立智能控制下的接触器闭环机电一体化仿真系统。通过仿真系统分析瞬态特性,合理设计控制模块的工作模式,从底层分析高频工作方式引起电子器件产生的噪声及抑制措施,达到对电磁机构动作特性的良好控制,试验验证了集成方案的可行性。
文摘This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.
基金supported by the National Natural Science Foundation of China(Grant No.51307050)
文摘The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.
基金supported by the National Natural Science Foundation of China(Grant No.61370033)National Basic Research Program of China(Grant No.2013CB035502)+4 种基金Foundation of Chinese State Key Laboratory of Robotics and Systems(Grant Nos.SKLRS201401A01,SKLRS-2014-MS-06)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIII.201411)Harbin Talent Programme for Distinguished Young Scholars(No.2014RFYXJ001)Postdoctoral Youth Talent Foundation of Heilongjiang Province,China(Grant No.LBH-TZ0403)the"111 Project"(Grant No.B07018)
文摘The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.