Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching m...Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching method by post-processing its result with the concept of similarity, and then get the lines matching according to feature points matching based on the approximate invariance of the features’ distribution between two images. Finally, we group all feature points into subsets in terms of their geometric relations with feature lines as initial sets to estimate homography rather than by a random search strategy (like RANSAC) as in most existing methods. The proposed method is especially suitable to detecting planes in man-made scenes. This method is validated on real images.展开更多
Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global featur...Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.展开更多
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk...Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation.展开更多
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov...Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.展开更多
Mobile device research has been increasing rapidly in Human Computer Interaction (HCI) recently. Following this trend, this paper proposes a user-centered interface, which has been designed, completely installed and...Mobile device research has been increasing rapidly in Human Computer Interaction (HCI) recently. Following this trend, this paper proposes a user-centered interface, which has been designed, completely installed and independently run on a mobile phone. Video signal is steamed through its camera as the image input to the interface by employing techniques of image processing, computer vision and graphics to identify automatically absolute positions of human face, neck and two hands. A paradigm is also put up theoretically. And it embeds this interface to perceive the human postures and convert them into relaxed comic character according to its context.展开更多
Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its rec...Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.展开更多
Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues fo...Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.展开更多
文摘Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching method by post-processing its result with the concept of similarity, and then get the lines matching according to feature points matching based on the approximate invariance of the features’ distribution between two images. Finally, we group all feature points into subsets in terms of their geometric relations with feature lines as initial sets to estimate homography rather than by a random search strategy (like RANSAC) as in most existing methods. The proposed method is especially suitable to detecting planes in man-made scenes. This method is validated on real images.
文摘Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.
基金Supported by the National Basic Research Program of China(No.2013CB329502)the National Natural Science Foundation of China(No.61202212)+1 种基金the Special Research Project of the Educational Department of Shaanxi Province of China(No.15JK1038)the Key Research Project of Baoji University of Arts and Sciences(No.ZK16047)
文摘Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation.
基金Projects(61173122,61262032) supported by the National Natural Science Foundation of ChinaProjects(11JJ3067,12JJ2038) supported by the Natural Science Foundation of Hunan Province,China
文摘Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2009-(C1090-0902-0007))the Soongsil University BK21 Digital Media Division
文摘Mobile device research has been increasing rapidly in Human Computer Interaction (HCI) recently. Following this trend, this paper proposes a user-centered interface, which has been designed, completely installed and independently run on a mobile phone. Video signal is steamed through its camera as the image input to the interface by employing techniques of image processing, computer vision and graphics to identify automatically absolute positions of human face, neck and two hands. A paradigm is also put up theoretically. And it embeds this interface to perceive the human postures and convert them into relaxed comic character according to its context.
文摘Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.
基金supported by the National Natural Science Foundation of China (Nos.60502006,60534070 and 90820306)the Science and Technology Plan of Zhejiang Province,China (No.2007C21007)
文摘Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.