随着风电场规模越来越大,传统的集中式控制、无功比例分配方式难以保证风电场运行的经济性和安全性,为此提出一种风电场内部分散式无功电压优化控制策略,风电场以分散式方式运行,以减小集电线路损耗和均衡机组机端电压为目标协调机组无...随着风电场规模越来越大,传统的集中式控制、无功比例分配方式难以保证风电场运行的经济性和安全性,为此提出一种风电场内部分散式无功电压优化控制策略,风电场以分散式方式运行,以减小集电线路损耗和均衡机组机端电压为目标协调机组无功出力。首先,基于Distflow潮流模型将优化控制目标建立成一个最优问题。然后,利用基于交替方向乘子法(alternating direction multiplier method,ADMM)的分散式优化算法,将原优化问题分解为若干子问题,通过相邻风机控制器间的信息交互,以分散式方式迭代求解。最后,在MATLAB和PSCAD中验证了所提出分散式优化控制策略的控制效果。结果表明:风电场内部分散式无功电压优化控制能够减轻风电场总站控制器通信负担,使风电场在满足上级无功需求指令的同时能够减小内部损耗,改善馈线电压分布,助力风电场经济、安全稳定运行。展开更多
This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the nu...This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the number of switching layers and internal speedup, for both bufferless and buffered SPPS architecture, are theoretically analyzed. Based on these results, an example of designing a scalable SPPS with 1.28T capacity is presented, and practical considerations on implementing the scheduling algorithm are discussed. Simulations are carried out to investigate the validity and delay performance of the SPPS architecture.展开更多
文摘随着风电场规模越来越大,传统的集中式控制、无功比例分配方式难以保证风电场运行的经济性和安全性,为此提出一种风电场内部分散式无功电压优化控制策略,风电场以分散式方式运行,以减小集电线路损耗和均衡机组机端电压为目标协调机组无功出力。首先,基于Distflow潮流模型将优化控制目标建立成一个最优问题。然后,利用基于交替方向乘子法(alternating direction multiplier method,ADMM)的分散式优化算法,将原优化问题分解为若干子问题,通过相邻风机控制器间的信息交互,以分散式方式迭代求解。最后,在MATLAB和PSCAD中验证了所提出分散式优化控制策略的控制效果。结果表明:风电场内部分散式无功电压优化控制能够减轻风电场总站控制器通信负担,使风电场在满足上级无功需求指令的同时能够减小内部损耗,改善馈线电压分布,助力风电场经济、安全稳定运行。
文摘This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the number of switching layers and internal speedup, for both bufferless and buffered SPPS architecture, are theoretically analyzed. Based on these results, an example of designing a scalable SPPS with 1.28T capacity is presented, and practical considerations on implementing the scheduling algorithm are discussed. Simulations are carried out to investigate the validity and delay performance of the SPPS architecture.