To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time ca...To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.展开更多
End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin...End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.展开更多
Bacteria need a high degree of genetic stability to maintain their species identities over long evolutionary times while retaining some mutability to adapt to the changing environment.It is a long unanswered question ...Bacteria need a high degree of genetic stability to maintain their species identities over long evolutionary times while retaining some mutability to adapt to the changing environment.It is a long unanswered question that how bacteria reconcile these seemingly contradictory biological properties.We hypothesized that certain mechanisms must maintain a dynamic balance between genetic stability and mutability for the survival and evolution of bacterial species.To identify such mechanisms,we analyzed bacterial genomes,focusing on the Salmonella mismatch repair(MMR)system.We found that the MMR gene mutL functions as a genetic switch through a slipped-strand mispairing mechanism,modulating and maintaining a dynamic balance between genetic stability and mutability during bacterial evolution.This mechanism allows bacteria to maintain their phylogenetic status,while also adapting to changing environments by acquiring novel traits.In this review,we outline the history of research into this genetic switch,from its discovery to the latest findings,and discuss its potential roles in the genomic evolution of bacteria.展开更多
文摘To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.
文摘End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.
基金supported by a Heilongjiang Innovation Endowment Award for graduate studies(YJSCX2012-197HLJ)to Tang Lea grant from the National Natural Science Foundation of China(NSFC30970078)+1 种基金the Natural Science Foundation of Heilongjiang Province to Liu GuiRongthe National Natural Science Foundation of China(NSFC30970119,81030029,81271786,NSFC-NIH 81161120416)to Liu ShuLin
文摘Bacteria need a high degree of genetic stability to maintain their species identities over long evolutionary times while retaining some mutability to adapt to the changing environment.It is a long unanswered question that how bacteria reconcile these seemingly contradictory biological properties.We hypothesized that certain mechanisms must maintain a dynamic balance between genetic stability and mutability for the survival and evolution of bacterial species.To identify such mechanisms,we analyzed bacterial genomes,focusing on the Salmonella mismatch repair(MMR)system.We found that the MMR gene mutL functions as a genetic switch through a slipped-strand mispairing mechanism,modulating and maintaining a dynamic balance between genetic stability and mutability during bacterial evolution.This mechanism allows bacteria to maintain their phylogenetic status,while also adapting to changing environments by acquiring novel traits.In this review,we outline the history of research into this genetic switch,from its discovery to the latest findings,and discuss its potential roles in the genomic evolution of bacteria.