机组最优投入问题(optimal Unit Commitment,UC)是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。该问题是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解,但由于它能带来显著...机组最优投入问题(optimal Unit Commitment,UC)是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。该问题是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解,但由于它能带来显著的经济效益,所以受到了国内外很多学者的广泛关注。作者尝试采用一种新型的模拟进化优化算法——蚁群优化算法(ACO)来求解该问题。首先,利用状态、决策及作者提出的路径概念把UC设计成类似于旅行商(TSP)问题的模式,从而可以方便地利用ACO来求解。其次,由于ACO处理的是无约束优化问题,对于UC这一约束优化问题,提出了不同的方法来处理各种约束。用tabu表限制不满足旋转备用约束和机组最小启/停时间约束的状态;通过附加惩罚项来处理线路N安全性约束。数值算例验证了此算法的可行性和有效性。展开更多
文摘机组最优投入问题(optimal Unit Commitment,UC)是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。该问题是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解,但由于它能带来显著的经济效益,所以受到了国内外很多学者的广泛关注。作者尝试采用一种新型的模拟进化优化算法——蚁群优化算法(ACO)来求解该问题。首先,利用状态、决策及作者提出的路径概念把UC设计成类似于旅行商(TSP)问题的模式,从而可以方便地利用ACO来求解。其次,由于ACO处理的是无约束优化问题,对于UC这一约束优化问题,提出了不同的方法来处理各种约束。用tabu表限制不满足旋转备用约束和机组最小启/停时间约束的状态;通过附加惩罚项来处理线路N安全性约束。数值算例验证了此算法的可行性和有效性。