Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical prope...The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical properties of the samples were studied by OM, SEM and MTS material tester. The results show that the microstructure and mechanical properties are improved after the ultrasonic vibration. The best effects of ultrasonic vibration on microstructure and mechanical properties were obtained with the ultrasonic vibration power of 600 W and time of 100 s. The cavitation and acoustic streaming caused by ultrasonic treatment play a major role in refining the microstructure and increasing mechanical properties of the alloy.展开更多
Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in a...Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.展开更多
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m...The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.展开更多
Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bon...Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.展开更多
The development of small and medium wind turbine industry in 2010 is presented, including the production capability, the mainstream products and the main producers. Suggestions for future's development are also pu...The development of small and medium wind turbine industry in 2010 is presented, including the production capability, the mainstream products and the main producers. Suggestions for future's development are also put forward.展开更多
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie...The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.展开更多
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th...A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.展开更多
The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear pow...The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear power equipment. Moreover, the paper opines that domestically manufactured nuclear power equipment has a certain competitive potential with respect to quality and price, the crux lying in the neces sity of reforming the management system of nuclear power.展开更多
Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions a...Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.展开更多
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
基金Projects(PHR200906101,00900054R7001,JC009011201301)supported by Beijing Municipal Education Commission, ChinaProject(X1009011201002)supported by Beijing University of Technology Science Foundation for Youths, China
文摘The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical properties of the samples were studied by OM, SEM and MTS material tester. The results show that the microstructure and mechanical properties are improved after the ultrasonic vibration. The best effects of ultrasonic vibration on microstructure and mechanical properties were obtained with the ultrasonic vibration power of 600 W and time of 100 s. The cavitation and acoustic streaming caused by ultrasonic treatment play a major role in refining the microstructure and increasing mechanical properties of the alloy.
基金Projects(51204036,51234009)supported by the National Natural Science Foundation of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.
基金Project (2016B090931004) supported by the Scientific and Research Plan of Guangdong Province, ChinaProject (51601229) supported by the National Natural Science Foundation of China。
文摘The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.
基金Project(51671017)supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B3)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,ChinaProject(SKLSP201835)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China
文摘Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.
文摘The development of small and medium wind turbine industry in 2010 is presented, including the production capability, the mainstream products and the main producers. Suggestions for future's development are also put forward.
基金Supported by the National Natural Science Foundation of China(No.51175373)New Century Educational Talents Plan of Chinese Education Ministry(No.NCET-10-0625)+1 种基金Key Technology and Development Program of Tianjin Municipal Science and Technology Commission(No.12ZCDZSY10600)Tianjin Key Laboratory of High Speed Cutting&Precision Machining(TUTE)(2013120024001167)
文摘The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.
基金the financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.
文摘The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear power equipment. Moreover, the paper opines that domestically manufactured nuclear power equipment has a certain competitive potential with respect to quality and price, the crux lying in the neces sity of reforming the management system of nuclear power.
文摘Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.