随着对飞机适航噪声的要求更加严格,利用机翼屏蔽效应对航空发动机进行噪声控制已成为一项有效策略与研究方向。基于惠更斯-菲涅尔原理,利用飞机噪声性能(Aircraft Noise and Performance,ANP)数据库计算飞机起飞航迹并在其上建立噪声源...随着对飞机适航噪声的要求更加严格,利用机翼屏蔽效应对航空发动机进行噪声控制已成为一项有效策略与研究方向。基于惠更斯-菲涅尔原理,利用飞机噪声性能(Aircraft Noise and Performance,ANP)数据库计算飞机起飞航迹并在其上建立噪声源,声源位置作为噪声屏蔽计算坐标输入屏蔽效应算法,应用Matlab软件进行噪声直接声场与衍射声场的建模,并通过机翼声屏障插入损失计算分析声压级屏蔽水平,把得到的结果与Heidmann风扇噪声预测模型相结合,以评估机翼屏蔽对飞行阶段发动机风扇噪声的影响。对比有/无机翼屏蔽效应的风扇前传噪声预测结果发现:随着噪声传播路径从机翼前缘至机翼后缘的移动,机翼屏蔽效应的影响呈先增大后减小的趋势,并且噪声频率越高,屏蔽效应越明显。展开更多
文摘随着对飞机适航噪声的要求更加严格,利用机翼屏蔽效应对航空发动机进行噪声控制已成为一项有效策略与研究方向。基于惠更斯-菲涅尔原理,利用飞机噪声性能(Aircraft Noise and Performance,ANP)数据库计算飞机起飞航迹并在其上建立噪声源,声源位置作为噪声屏蔽计算坐标输入屏蔽效应算法,应用Matlab软件进行噪声直接声场与衍射声场的建模,并通过机翼声屏障插入损失计算分析声压级屏蔽水平,把得到的结果与Heidmann风扇噪声预测模型相结合,以评估机翼屏蔽对飞行阶段发动机风扇噪声的影响。对比有/无机翼屏蔽效应的风扇前传噪声预测结果发现:随着噪声传播路径从机翼前缘至机翼后缘的移动,机翼屏蔽效应的影响呈先增大后减小的趋势,并且噪声频率越高,屏蔽效应越明显。